
as

as ii

Copyright © translationfromMakeinfobyInfo2Guide.REXXÂ©1993 A.Ponzio

as iii

COLLABORATORS

TITLE :

as

ACTION NAME DATE SIGNATURE

WRITTEN BY April 16, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

as iv

Contents

1 as 1

1.1 as . 1

1.2 Overview . 2

1.3 Manual . 5

1.4 GNU Assembler . 5

1.5 Object Formats . 6

1.6 Command Line . 6

1.7 Input Files . 7

1.8 Object . 8

1.9 Errors . 8

1.10 Invoking . 8

1.11 a . 10

1.12 D . 10

1.13 f . 10

1.14 I . 11

1.15 K . 11

1.16 L . 11

1.17 o . 12

1.18 R . 12

1.19 statistics . 12

1.20 v . 12

1.21 W . 13

1.22 Z . 13

1.23 Syntax . 13

1.24 Preprocessing . 14

1.25 Whitespace . 14

1.26 Comments . 15

1.27 Symbol Intro . 16

1.28 Statements . 16

1.29 Constants . 17

as v

1.30 Characters . 17

1.31 Strings . 18

1.32 Chars . 19

1.33 Numbers . 19

1.34 Integers . 20

1.35 Bignums . 20

1.36 Flonums . 20

1.37 Sections . 21

1.38 Secs Background . 22

1.39 Ld Sections . 23

1.40 As Sections . 25

1.41 Sub-Sections . 25

1.42 bss . 26

1.43 Symbols . 26

1.44 Labels . 27

1.45 Setting Symbols . 27

1.46 Symbol Names . 28

1.47 Dot . 29

1.48 Symbol Attributes . 29

1.49 Symbol Value . 30

1.50 Symbol Type . 30

1.51 a.out Symbols . 30

1.52 Symbol Desc . 31

1.53 Symbol Other . 31

1.54 COFF Symbols . 31

1.55 SOM Symbols . 31

1.56 Expressions . 32

1.57 Empty Exprs . 32

1.58 Integer Exprs . 32

1.59 Arguments . 33

1.60 Operators . 33

1.61 Prefix Ops . 34

1.62 Infix Ops . 34

1.63 Pseudo Ops . 35

1.64 Abort . 39

1.65 ABORT . 39

1.66 Align . 39

1.67 App-File . 40

1.68 Ascii . 40

as vi

1.69 Asciz . 40

1.70 Byte . 40

1.71 Comm . 41

1.72 Data . 41

1.73 Def . 41

1.74 Desc . 41

1.75 Dim . 42

1.76 Double . 42

1.77 Eject . 42

1.78 Else . 42

1.79 Endef . 42

1.80 Endif . 43

1.81 Equ . 43

1.82 Extern . 43

1.83 File . 43

1.84 Fill . 44

1.85 Float . 44

1.86 Global . 44

1.87 hword . 44

1.88 Ident . 45

1.89 If . 45

1.90 Include . 45

1.91 Int . 46

1.92 Lcomm . 46

1.93 Lflags . 46

1.94 Line . 46

1.95 Ln . 47

1.96 List . 47

1.97 Long . 47

1.98 Nolist . 47

1.99 Octa . 48

1.100Org . 48

1.101Psize . 48

1.102Quad . 49

1.103Sbttl . 49

1.104Scl . 49

1.105Section . 50

1.106Set . 50

1.107Short . 50

as vii

1.108Single . 50

1.109Size . 51

1.110Space . 51

1.111Stab . 51

1.112String . 52

1.113Tag . 52

1.114Text . 53

1.115Title . 53

1.116Type . 53

1.117Val . 53

1.118Word . 54

1.119Deprecated . 54

1.120Machine Dependencies . 55

1.121Vax-Dependent . 56

1.122Vax-Opts . 56

1.123VAX-float . 57

1.124VAX-directives . 58

1.125VAX-opcodes . 58

1.126VAX-branch . 58

1.127VAX-operands . 60

1.128VAX-no . 61

1.129AMD29K-Dependent . 61

1.130AMD29K Options . 61

1.131AMD29K Syntax . 61

1.132AMD29K-Chars . 62

1.133AMD29K-Regs . 62

1.134AMD29K Floating Point . 63

1.135AMD29K Directives . 63

1.136AMD29K Opcodes . 64

1.137H8/300-Dependent . 64

1.138H8/300 Options . 64

1.139H8/300 Syntax . 64

1.140H8/300-Chars . 64

1.141H8/300-Regs . 65

1.142H8/300-Addressing . 65

1.143H8/300 Floating Point . 66

1.144H8/300 Directives . 66

1.145H8/300 Opcodes . 66

1.146H8/500-Dependent . 70

as viii

1.147H8/500 Options . 70

1.148H8/500 Syntax . 70

1.149H8/500-Chars . 70

1.150H8/500-Regs . 71

1.151H8/500-Addressing . 71

1.152H8/500 Floating Point . 72

1.153H8/500 Directives . 72

1.154H8/500 Opcodes . 72

1.155HPPA-Dependent . 74

1.156HPPA Notes . 75

1.157HPPA Options . 75

1.158HPPA Syntax . 75

1.159HPPA Floating Point . 76

1.160HPPA Directives . 76

1.161HPPA Opcodes . 79

1.162SH-Dependent . 79

1.163SH Options . 80

1.164SH Syntax . 80

1.165SH-Chars . 80

1.166SH-Regs . 81

1.167SH-Addressing . 81

1.168SH Floating Point . 82

1.169SH Directives . 82

1.170SH Opcodes . 82

1.171i960-Dependent . 84

1.172Options-i960 . 84

1.173Floating Point-i960 . 86

1.174Directives-i960 . 86

1.175Opcodes for i960 . 87

1.176callj-i960 . 87

1.177Compare-and-branch-i960 . 88

1.178M68K-Dependent . 88

1.179M68K-Opts . 89

1.180M68K-Syntax . 89

1.181M68K-Moto-Syntax . 91

1.182M68K-Float . 91

1.183M68K-Directives . 92

1.184M68K-opcodes . 92

1.185M68K-Branch . 93

as ix

1.186M68K-Chars . 94

1.187Sparc-Dependent . 94

1.188Sparc-Opts . 95

1.189Sparc-Float . 95

1.190Sparc-Directives . 95

1.191i386-Dependent . 96

1.192i386-Options . 96

1.193i386-Syntax . 97

1.194i386-Opcodes . 97

1.195i386-Regs . 98

1.196i386-prefixes . 99

1.197i386-Memory . 100

1.198i386-jumps . 101

1.199i386-Float . 101

1.200i386-Notes . 102

1.201Z8000-Dependent . 102

1.202Z8000 Options . 103

1.203Z8000 Syntax . 103

1.204Z8000-Chars . 103

1.205Z8000-Regs . 104

1.206Z8000-Addressing . 104

1.207Z8000 Directives . 105

1.208Z8000 Opcodes . 106

1.209MIPS-Dependent . 109

1.210MIPS Opts . 109

1.211MIPS Object . 110

1.212MIPS Stabs . 111

1.213MIPS ISA . 111

1.214Acknowledgements . 111

1.215Index . 113

as 1 / 126

Chapter 1

as

1.1 as

Using as

This file is a user guide to the GNU assembler ‘as’.

* Menu:

*
Overview

Overview

*
Invoking

Command-Line Options

*
Syntax

Syntax

*
Sections

Sections and Relocation

*
Symbols

Symbols

*
Expressions

Expressions

*
Pseudo Ops

Assembler Directives

*
Machine Dependencies

Machine Dependent Features

*
Acknowledgements

Who Did What

*
Index

Index

as 2 / 126

1.2 Overview

Overview

Here is a brief summary of how to invoke ‘as’. For details, *note
Comand-Line Options: Invoking..

as [-a[dhlns]] [-D] [-f] [-I PATH]
[-K] [-L] [-o OBJFILE] [-R]
[--statistics] [-v] [-W] [-Z]
[-Av6 | -Av7 | -Av8 | -Asparclite | -bump]
[-ACA | -ACA_A | -ACB | -ACC | -AKA | -AKB | -AKC | -AMC]
[-b] [-norelax]
[-l] [-m68000 | -m68010 | -m68020 | ...]
[-nocpp] [-EL] [-EB] [-G NUM]
[-mips1] [-mips2] [-mips3]
[--trap] [--break]
[-- | FILES ...]

‘-a[dhlns]’
Turn on listings, in any of a variety of ways:

‘-ad’
omit debugging directives from listing

‘-ah’
include high-level source

‘-al’
assembly listing

‘-an’
no forms processing

‘-as’
symbols

You may combine these options; for example, use ‘-aln’ for assembly
listing without forms processing. By itself, ‘-a’ defaults to
‘-ahls’--that is, all listings turned on.

‘-D’
This option is accepted only for script compatibility with calls to
other assemblers; it has no effect on ‘as’.

‘-f’
"fast"--skip whitespace and comment preprocessing (assume source is
compiler output)

‘-I PATH’
Add PATH to the search list for ‘.include’ directives

as 3 / 126

‘-K’
Issue warnings when difference tables altered for long
displacements.

‘-L’
Keep (in symbol table) local symbols, starting with ‘L’

‘-o OBJFILE’
Name the object-file output from ‘as’

‘-R’
Fold data section into text section

‘--statistics’
Display maximum space (in bytes), and total time (in seconds),
taken by assembly.

‘-v’
Announce ‘as’ version

‘-W’
Suppress warning messages

‘-Z’
Generate object file even after errors

‘-- | FILES ...’
Standard input, or source files to assemble.

The following options are available when as is configured for the
Intel 80960 processor.

‘-ACA | -ACA_A | -ACB | -ACC | -AKA | -AKB | -AKC | -AMC’
Specify which variant of the 960 architecture is the target.

‘-b’
Add code to collect statistics about branches taken.

‘-norelax’
Do not alter compare-and-branch instructions for long
displacements; error if necessary.

The following options are available when as is configured for the
Motorola 68000 series.

‘-l’
Shorten references to undefined symbols, to one word instead of
two.

‘-m68000 | -m68008 | -m68010 | -m68020 | -m68030 | -m68040’
‘| -m68302 | -m68331 | -m68332 | -m68333 | -m68340 | -mcpu32’

Specify what processor in the 68000 family is the target. The
default is normally the 68020, but this can be changed at
configuration time.

‘-m68881 | -m68882 | -mno-68881 | -mno-68882’
The target machine does (or does not) have a floating-point

as 4 / 126

coprocessor. The default is to assume a coprocessor for 68020,
68030, and cpu32. Although the basic 68000 is not compatible with
the 68881, a combination of the two can be specified, since it’s
possible to do emulation of the coprocessor instructions with the
main processor.

‘-m68851 | -mno-68851’
The target machine does (or does not) have a memory-management
unit coprocessor. The default is to assume an MMU for 68020 and
up.

The following options are available when ‘as’ is configured for the
SPARC architecture:

‘-Av6 | -Av7 | -Av8 | -Asparclite’
Explicitly select a variant of the SPARC architecture.

‘-bump’
Warn when the assembler switches to another architecture.

The following options are available when as is configured for a MIPS
processor.

‘-G NUM’
This option sets the largest size of an object that can be
referenced implicitly with the ‘gp’ register. It is only accepted
for targets that use ECOFF format, such as a DECstation running
Ultrix. The default value is 8.

‘-EB’
Generate "big endian" format output.

‘-EL’
Generate "little endian" format output.

‘-mips1’
‘-mips2’
‘-mips3’

Generate code for a particular MIPS Instruction Set Architecture
level. ‘-mips1’ corresponds to the R2000 and R3000 processors,
‘-mips2’ to the R6000 processor, and ‘-mips3’ to the R4000
processor.

‘-nocpp’
‘as’ ignores this option. It is accepted for compatibility with
the native tools.

‘--trap’
‘--no-trap’
‘--break’
‘--no-break’

Control how to deal with multiplication overflow and division by
zero. ‘--trap’ or ‘--no-break’ (which are synonyms) take a trap
exception (and only work for Instruction Set Architecture level 2
and higher); ‘--break’ or ‘--no-trap’ (also synonyms, and the
default) take a break exception.

as 5 / 126

* Menu:

*
Manual

Structure of this Manual

*
GNU Assembler

as, the GNU Assembler

*
Object Formats

Object File Formats

*
Command Line

Command Line

*
Input Files

Input Files

*
Object

Output (Object) File

*
Errors

Error and Warning Messages

1.3 Manual

Structure of this Manual
========================

This manual is intended to describe what you need to know to use GNU
‘as’. We cover the syntax expected in source files, including notation
for symbols, constants, and expressions; the directives that ‘as’
understands; and of course how to invoke ‘as’.

This manual also describes some of the machine-dependent features of
various flavors of the assembler.

On the other hand, this manual is *not* intended as an introduction
to programming in assembly language--let alone programming in general!
In a similar vein, we make no attempt to introduce the machine
architecture; we do *not* describe the instruction set, standard
mnemonics, registers or addressing modes that are standard to a
particular architecture. You may want to consult the manufacturer’s
machine architecture manual for this information.

1.4 GNU Assembler

as, the GNU Assembler
=====================

GNU ‘as’ is really a family of assemblers. If you use (or have

as 6 / 126

used) the GNU assembler on one architecture, you should find a fairly
similar environment when you use it on another architecture. Each
version has much in common with the others, including object file
formats, most assembler directives (often called "pseudo-ops") and
assembler syntax.

‘as’ is primarily intended to assemble the output of the GNU C
compiler ‘gcc’ for use by the linker ‘ld’. Nevertheless, we’ve tried
to make ‘as’ assemble correctly everything that other assemblers for
the same machine would assemble. Any exceptions are documented
explicitly (

Machine Dependencies
.). This doesn’t mean ‘as’

always uses the same syntax as another assembler for the same
architecture; for example, we know of several incompatible versions of
680x0 assembly language syntax.

Unlike older assemblers, ‘as’ is designed to assemble a source
program in one pass of the source file. This has a subtle impact on the
‘.org’ directive (*note ‘.org’: Org.).

1.5 Object Formats

Object File Formats
===================

The GNU assembler can be configured to produce several alternative
object file formats. For the most part, this does not affect how you
write assembly language programs; but directives for debugging symbols
are typically different in different file formats. *Note Symbol
Attributes: Symbol Attributes.

1.6 Command Line

Command Line
============

After the program name ‘as’, the command line may contain options
and file names. Options may appear in any order, and may be before,
after, or between file names. The order of file names is significant.

‘--’ (two hyphens) by itself names the standard input file
explicitly, as one of the files for ‘as’ to assemble.

Except for ‘--’ any command line argument that begins with a hyphen
(‘-’) is an option. Each option changes the behavior of ‘as’. No
option changes the way another option works. An option is a ‘-’
followed by one or more letters; the case of the letter is important.
All options are optional.

Some options expect exactly one file name to follow them. The file

as 7 / 126

name may either immediately follow the option’s letter (compatible with
older assemblers) or it may be the next command argument (GNU
standard). These two command lines are equivalent:

as -o my-object-file.o mumble.s
as -omy-object-file.o mumble.s

1.7 Input Files

Input Files
===========

We use the phrase "source program", abbreviated "source", to
describe the program input to one run of ‘as’. The program may be in
one or more files; how the source is partitioned into files doesn’t
change the meaning of the source.

The source program is a concatenation of the text in all the files,
in the order specified.

Each time you run ‘as’ it assembles exactly one source program. The
source program is made up of one or more files. (The standard input is
also a file.)

You give ‘as’ a command line that has zero or more input file names.
The input files are read (from left file name to right). A command
line argument (in any position) that has no special meaning is taken to
be an input file name.

If you give ‘as’ no file names it attempts to read one input file
from the ‘as’ standard input, which is normally your terminal. You may
have to type ctl-D to tell ‘as’ there is no more program to assemble.

Use ‘--’ if you need to explicitly name the standard input file in
your command line.

If the source is empty, ‘as’ produces a small, empty object file.

Filenames and Line-numbers

There are two ways of locating a line in the input file (or files)
and either may be used in reporting error messages. One way refers to
a line number in a physical file; the other refers to a line number in a
"logical" file. *Note Error and Warning Messages: Errors.

"Physical files" are those files named in the command line given to
‘as’.

"Logical files" are simply names declared explicitly by assembler
directives; they bear no relation to physical files. Logical file names
help error messages reflect the original source file, when ‘as’ source
is itself synthesized from other files. *Note ‘.app-file’: App-File.

as 8 / 126

1.8 Object

Output (Object) File
====================

Every time you run ‘as’ it produces an output file, which is your
assembly language program translated into numbers. This file is the
object file. Its default name is ‘a.out’, or ‘b.out’ when ‘as’ is
configured for the Intel 80960. You can give it another name by using
the ‘-o’ option. Conventionally, object file names end with ‘.o’. The
default name is used for historical reasons: older assemblers were
capable of assembling self-contained programs directly into a runnable
program. (For some formats, this isn’t currently possible, but it can
be done for the ‘a.out’ format.)

The object file is meant for input to the linker ‘ld’. It contains
assembled program code, information to help ‘ld’ integrate the
assembled program into a runnable file, and (optionally) symbolic
information for the debugger.

1.9 Errors

Error and Warning Messages
==========================

‘as’ may write warnings and error messages to the standard error
file (usually your terminal). This should not happen when a compiler
runs ‘as’ automatically. Warnings report an assumption made so that
‘as’ could keep assembling a flawed program; errors report a grave
problem that stops the assembly.

Warning messages have the format

file_name:NNN:Warning Message Text

(where NNN is a line number). If a logical file name has been given
(*note ‘.app-file’: App-File.) it is used for the filename, otherwise
the name of the current input file is used. If a logical line number
was given (*note ‘.line’: Line.) then it is used to calculate the
number printed, otherwise the actual line in the current source file is
printed. The message text is intended to be self explanatory (in the
grand Unix tradition).

Error messages have the format
file_name:NNN:FATAL:Error Message Text

The file name and line number are derived as for warning messages.
The actual message text may be rather less explanatory because many of
them aren’t supposed to happen.

1.10 Invoking

as 9 / 126

Command-Line Options

This chapter describes command-line options available in *all*
versions of the GNU assembler;

Machine Dependencies
., for

options specific to particular machine architectures.

If you are invoking ‘as’ via the GNU C compiler (version 2), you can
use the ‘-Wa’ option to pass arguments through to the assembler. The
assembler arguments must be separated from each other (and the ‘-Wa’)
by commas. For example:

gcc -c -g -O -Wa,-alh,-L file.c

emits a listing to standard output with high-level and assembly source.

Usually you do not need to use this ‘-Wa’ mechanism, since many
compiler command-line options are automatically passed to the assembler
by the compiler. (You can call the GNU compiler driver with the ‘-v’
option to see precisely what options it passes to each compilation
pass, including the assembler.)

* Menu:

*
a

-a[dhlns] enable listings

*
D

-D for compatibility

*
f

-f to work faster

*
I

-I for .include search path

*
K

-K for difference tables

*
L

-L to retain local labels

*
o

-o to name the object file

*
R

-R to join data and text sections

*
statistics

-statistics to see statistics about assembly

*

as 10 / 126

v
-v to announce version

*
W

-W to suppress warnings

*
Z

-Z to make object file even after errors

1.11 a

Enable Listings: ‘-a[dhlns]’
============================

These options enable listing output from the assembler. By itself,
‘-a’ requests high-level, assembly, and symbols listing. You can use
other letters to select specific options for the list: ‘-ah’ requests a
high-level language listing, ‘-al’ requests an output-program assembly
listing, and ‘-as’ requests a symbol table listing. High-level
listings require that a compiler debugging option like ‘-g’ be used,
and that assembly listings (‘-al’) be requested also.

Use the ‘-ad’ option to omit debugging directives from the listing.

Once you have specified one of these options, you can further control
listing output and its appearance using the directives ‘.list’,
‘.nolist’, ‘.psize’, ‘.eject’, ‘.title’, and ‘.sbttl’. The ‘-an’
option turns off all forms processing. If you do not request listing
output with one of the ‘-a’ options, the listing-control directives
have no effect.

The letters after ‘-a’ may be combined into one option, *e.g.*,
‘-aln’.

1.12 D

‘-D’
====

This option has no effect whatsoever, but it is accepted to make it
more likely that scripts written for other assemblers also work with
‘as’.

1.13 f

Work Faster: ‘-f’
=================

‘-f’ should only be used when assembling programs written by a

as 11 / 126

(trusted) compiler. ‘-f’ stops the assembler from doing whitespace and
comment preprocessing on the input file(s) before assembling them.

*Note Preprocessing: Preprocessing.

Warning: if you use ‘-f’ when the files actually need to be
preprocessed (if they contain comments, for example), ‘as’ does
not work correctly.

1.14 I

‘.include’ search path: ‘-I’ PATH
=================================

Use this option to add a PATH to the list of directories ‘as’
searches for files specified in ‘.include’ directives (*note
‘.include’: Include.). You may use ‘-I’ as many times as necessary to
include a variety of paths. The current working directory is always
searched first; after that, ‘as’ searches any ‘-I’ directories in the
same order as they were specified (left to right) on the command line.

1.15 K

Difference Tables: ‘-K’
=======================

‘as’ sometimes alters the code emitted for directives of the form
‘.word SYM1-SYM2’; *note ‘.word’: Word.. You can use the ‘-K’ option
if you want a warning issued when this is done.

1.16 L

Include Local Labels: ‘-L’
==========================

Labels beginning with ‘L’ (upper case only) are called "local
labels . Normally you do not see such labels when
debugging, because they are intended for the use of programs (like
compilers) that compose assembler programs, not for your notice.
Normally both ‘as’ and ‘ld’ discard such labels, so you do not normally
debug with them.

This option tells ‘as’ to retain those ‘L...’ symbols in the object
file. Usually if you do this you also tell the linker ‘ld’ to preserve
symbols whose names begin with ‘L’.

By default, a local label is any label beginning with ‘L’, but each
target is allowed to redefine the local label prefix. On the HPPA
local labels begin with ‘L$’.

as 12 / 126

1.17 o

Name the Object File: ‘-o’
==========================

There is always one object file output when you run ‘as’. By
default it has the name ‘a.out’ (or ‘b.out’, for Intel 960 targets
only). You use this option (which takes exactly one filename) to give
the object file a different name.

Whatever the object file is called, ‘as’ overwrites any existing
file of the same name.

1.18 R

Join Data and Text Sections: ‘-R’
=================================

‘-R’ tells ‘as’ to write the object file as if all data-section data
lives in the text section. This is only done at the very last moment:
your binary data are the same, but data section parts are relocated
differently. The data section part of your object file is zero bytes
long because all its bytes are appended to the text section. (*Note
Sections and Relocation: Sections.)

When you specify ‘-R’ it would be possible to generate shorter
address displacements (because we do not have to cross between text and
data section). We refrain from doing this simply for compatibility with
older versions of ‘as’. In future, ‘-R’ may work this way.

When ‘as’ is configured for COFF output, this option is only useful
if you use sections named ‘.text’ and ‘.data’.

‘-R’ is not supported for any of the HPPA targets. Using ‘-R’
generates a warning from ‘as’.

1.19 statistics

Display Assembly Statistics: ‘--statistics’
===

Use ‘--statistics’ to display two statistics about the resources
used by ‘as’: the maximum amount of space allocated during the assembly
(in bytes), and the total execution time taken for the assembly (in CPU
seconds).

1.20 v

as 13 / 126

Announce Version: ‘-v’
======================

You can find out what version of as is running by including the
option ‘-v’ (which you can also spell as ‘-version’) on the command
line.

1.21 W

Suppress Warnings: ‘-W’
=======================

‘as’ should never give a warning or error message when assembling
compiler output. But programs written by people often cause ‘as’ to
give a warning that a particular assumption was made. All such
warnings are directed to the standard error file. If you use this
option, no warnings are issued. This option only affects the warning
messages: it does not change any particular of how ‘as’ assembles your
file. Errors, which stop the assembly, are still reported.

1.22 Z

Generate Object File in Spite of Errors: ‘-Z’
===

After an error message, ‘as’ normally produces no output. If for
some reason you are interested in object file output even after ‘as’
gives an error message on your program, use the ‘-Z’ option. If there
are any errors, ‘as’ continues anyways, and writes an object file after
a final warning message of the form ‘N errors, M warnings, generating
bad object file.’

1.23 Syntax

Syntax

This chapter describes the machine-independent syntax allowed in a
source file. ‘as’ syntax is similar to what many other assemblers use;
it is inspired by the BSD 4.2 assembler, except that ‘as’ does not
assemble Vax bit-fields.

* Menu:

*
Preprocessing

Preprocessing

*
Whitespace

as 14 / 126

Whitespace

*
Comments

Comments

*
Symbol Intro

Symbols

*
Statements

Statements

*
Constants

Constants

1.24 Preprocessing

Preprocessing
=============

The ‘as’ internal preprocessor:

* adjusts and removes extra whitespace. It leaves one space or tab
before the keywords on a line, and turns any other whitespace on
the line into a single space.

* removes all comments, replacing them with a single space, or an
appropriate number of newlines.

* converts character constants into the appropriate numeric values.

It does not do macro processing, include file handling, or anything
else you may get from your C compiler’s preprocessor. You can do
include file processing with the ‘.include’ directive (*note
‘.include’: Include.). You can use the GNU C compiler driver to get
other "CPP" style preprocessing, by giving the input file a ‘.S’
suffix. *Note Options Controlling the Kind of Output:
(gcc.info)Overall Options.

Excess whitespace, comments, and character constants cannot be used
in the portions of the input text that are not preprocessed.

If the first line of an input file is ‘#NO_APP’ or if you use the
‘-f’ option, whitespace and comments are not removed from the input
file. Within an input file, you can ask for whitespace and comment
removal in specific portions of the by putting a line that says ‘#APP’
before the text that may contain whitespace or comments, and putting a
line that says ‘#NO_APP’ after this text. This feature is mainly
intend to support ‘asm’ statements in compilers whose output is
otherwise free of comments and whitespace.

1.25 Whitespace

as 15 / 126

Whitespace
==========

"Whitespace" is one or more blanks or tabs, in any order.
Whitespace is used to separate symbols, and to make programs neater for
people to read. Unless within character constants (*note Character
Constants: Characters.), any whitespace means the same as exactly one
space.

1.26 Comments

Comments
========

There are two ways of rendering comments to ‘as’. In both cases the
comment is equivalent to one space.

Anything from ‘/*’ through the next ‘*/’ is a comment. This means
you may not nest these comments.

/*
The only way to include a newline (’\n’) in a comment
is to use this sort of comment.

*/

/* This sort of comment does not nest. */

Anything from the "line comment" character to the next newline is
considered a comment and is ignored. The line comment character is ‘#’
on the Vax; ‘#’ on the i960; ‘!’ on the SPARC; ‘|’ on the 680x0; ‘;’
for the AMD 29K family; ‘;’ for the H8/300 family; ‘!’ for the H8/500
family; ‘;’ for the HPPA; ‘!’ for the Hitachi SH; ‘!’ for the Z8000;
see *Note Machine Dependencies .

On some machines there are two different line comment characters.
One character only begins a comment if it is the first non-whitespace
character on a line, while the other always begins a comment.

To be compatible with past assemblers, lines that begin with ‘#’
have a special interpretation. Following the ‘#’ should be an absolute
expression (

Expressions
.): the logical line number of the *next*

line. Then a string (*note Strings: Strings.) is allowed: if present
it is a new logical file name. The rest of the line, if any, should be
whitespace.

If the first non-whitespace characters on the line are not numeric,
the line is ignored. (Just like a comment.)

This is an ordinary comment.
42-6 "new_file_name" # New logical file name

This is logical line # 36.
This feature is deprecated, and may disappear from future versions

as 16 / 126

of ‘as’.

1.27 Symbol Intro

Symbols
=======

A "symbol" is one or more characters chosen from the set of all
letters (both upper and lower case), digits and the three characters
‘_.$’. On most machines, you can also use ‘$’ in symbol names;
exceptions are noted in *Note Machine Dependencies . No symbol may
begin with a digit. Case is significant. There is no length limit:
all characters are significant. Symbols are delimited by characters
not in that set, or by the beginning of a file (since the source
program must end with a newline, the end of a file is not a possible
symbol delimiter). *Note Symbols .

1.28 Statements

Statements
==========

A "statement" ends at a newline character (‘\n’) or line separator
character. (The line separator is usually ‘;’, unless this conflicts
with the comment character;

Machine Dependencies
..) The

newline or separator character is considered part of the preceding
statement. Newlines and separators within character constants are an
exception: they do not end statements.

It is an error to end any statement with end-of-file: the last
character of any input file should be a newline.

You may write a statement on more than one line if you put a
backslash (‘\’) immediately in front of any newlines within the
statement. When ‘as’ reads a backslashed newline both characters are
ignored. You can even put backslashed newlines in the middle of symbol
names without changing the meaning of your source program.

An empty statement is allowed, and may include whitespace. It is
ignored.

A statement begins with zero or more labels, optionally followed by a
key symbol which determines what kind of statement it is. The key
symbol determines the syntax of the rest of the statement. If the
symbol begins with a dot ‘.’ then the statement is an assembler
directive: typically valid for any computer. If the symbol begins with
a letter the statement is an assembly language "instruction": it
assembles into a machine language instruction. Different versions of
‘as’ for different computers recognize different instructions. In

as 17 / 126

fact, the same symbol may represent a different instruction in a
different computer’s assembly language.

A label is a symbol immediately followed by a colon (‘:’).
Whitespace before a label or after a colon is permitted, but you may not
have whitespace between a label’s symbol and its colon. *Note Labels .

For HPPA targets, labels need not be immediately followed by a
colon, but the definition of a label must begin in column zero. This
also implies that only one label may be defined on each line.

label: .directive followed by something
another_label: # This is an empty statement.

instruction operand_1, operand_2, ...

1.29 Constants

Constants
=========

A constant is a number, written so that its value is known by
inspection, without knowing any context. Like this:

.byte 74, 0112, 092, 0x4A, 0X4a, ’J, ’\J # All the same value.

.ascii "Ring the bell\7" # A string constant.

.octa 0x123456789abcdef0123456789ABCDEF0 # A bignum.

.float 0f-314159265358979323846264338327\
95028841971.693993751E-40 # - pi, a flonum.

* Menu:

*
Characters

Character Constants

*
Numbers

Number Constants

1.30 Characters

Character Constants

There are two kinds of character constants. A "character" stands
for one character in one byte and its value may be used in numeric
expressions. String constants (properly called string *literals*) are
potentially many bytes and their values may not be used in arithmetic
expressions.

* Menu:

as 18 / 126

*
Strings

Strings

*
Chars

Characters

1.31 Strings

Strings
.......

A "string" is written between double-quotes. It may contain
double-quotes or null characters. The way to get special characters
into a string is to "escape" these characters: precede them with a
backslash ‘\’ character. For example ‘\’ represents one backslash:
the first ‘\’ is an escape which tells ‘as’ to interpret the second
character literally as a backslash (which prevents ‘as’ from
recognizing the second ‘\’ as an escape character). The complete list
of escapes follows.

‘\b’
Mnemonic for backspace; for ASCII this is octal code 010.

‘\f’
Mnemonic for FormFeed; for ASCII this is octal code 014.

‘\n’
Mnemonic for newline; for ASCII this is octal code 012.

‘\r’
Mnemonic for carriage-Return; for ASCII this is octal code 015.

‘\t’
Mnemonic for horizontal Tab; for ASCII this is octal code 011.

‘\ DIGIT DIGIT DIGIT’
An octal character code. The numeric code is 3 octal digits. For
compatibility with other Unix systems, 8 and 9 are accepted as
digits: for example, ‘\008’ has the value 010, and ‘\009’ the
value 011.

‘\‘x’ HEX-DIGIT HEX-DIGIT’
A hex character code. The numeric code is 2 hexadecimal digits.
Either upper or lower case ‘x’ works.

‘\’
Represents one ‘\’ character.

‘\"’
Represents one ‘"’ character. Needed in strings to represent this
character, because an unescaped ‘"’ would end the string.

‘\ ANYTHING-ELSE’

as 19 / 126

Any other character when escaped by ‘\’ gives a warning, but
assembles as if the ‘\’ was not present. The idea is that if you
used an escape sequence you clearly didn’t want the literal
interpretation of the following character. However ‘as’ has no
other interpretation, so ‘as’ knows it is giving you the wrong
code and warns you of the fact.

Which characters are escapable, and what those escapes represent,
varies widely among assemblers. The current set is what we think the
BSD 4.2 assembler recognizes, and is a subset of what most C compilers
recognize. If you are in doubt, do not use an escape sequence.

1.32 Chars

Characters
..........

A single character may be written as a single quote immediately
followed by that character. The same escapes apply to characters as to
strings. So if you want to write the character backslash, you must
write ‘’\’ where the first ‘\’ escapes the second ‘\’. As you can
see, the quote is an acute accent, not a grave accent. A newline
immediately following an acute accent is taken as a literal character
and does not count as the end of a statement. The value of a character
constant in a numeric expression is the machine’s byte-wide code for
that character. ‘as’ assumes your character code is ASCII: ‘’A’ means
65, ‘’B’ means 66, and so on.

1.33 Numbers

Number Constants

‘as’ distinguishes three kinds of numbers according to how they are
stored in the target machine. *Integers* are numbers that would fit
into an ‘int’ in the C language. *Bignums* are integers, but they are
stored in more than 32 bits. *Flonums* are floating point numbers,
described below.

* Menu:

*
Integers

Integers

*
Bignums

Bignums

*
Flonums

Flonums

as 20 / 126

1.34 Integers

Integers
........

A binary integer is ‘0b’ or ‘0B’ followed by zero or more of the
binary digits ‘01’.

An octal integer is ‘0’ followed by zero or more of the octal digits
(‘01234567’).

A decimal integer starts with a non-zero digit followed by zero or
more digits (‘0123456789’).

A hexadecimal integer is ‘0x’ or ‘0X’ followed by one or more
hexadecimal digits chosen from ‘0123456789abcdefABCDEF’.

Integers have the usual values. To denote a negative integer, use
the prefix operator ‘-’ discussed under expressions (*note Prefix
Operators: Prefix Ops.).

1.35 Bignums

Bignums
.......

A "bignum" has the same syntax and semantics as an integer except
that the number (or its negative) takes more than 32 bits to represent
in binary. The distinction is made because in some places integers are
permitted while bignums are not.

1.36 Flonums

Flonums
.......

A "flonum" represents a floating point number. The translation is
indirect: a decimal floating point number from the text is converted by
‘as’ to a generic binary floating point number of more than sufficient
precision. This generic floating point number is converted to a
particular computer’s floating point format (or formats) by a portion
of ‘as’ specialized to that computer.

A flonum is written by writing (in order)

* The digit ‘0’. (‘0’ is optional on the HPPA.)

* A letter, to tell ‘as’ the rest of the number is a flonum. ‘e’ is
recommended. Case is not important.

On the H8/300, H8/500, Hitachi SH, and AMD 29K architectures, the
letter must be one of the letters ‘DFPRSX’ (in upper or lower
case).

as 21 / 126

On the Intel 960 architecture, the letter must be one of the
letters ‘DFT’ (in upper or lower case).

On the HPPA architecture, the letter must be ‘E’ (upper case only).

* An optional sign: either ‘+’ or ‘-’.

* An optional "integer part": zero or more decimal digits.

* An optional "fractional part": ‘.’ followed by zero or more
decimal digits.

* An optional exponent, consisting of:

* An ‘E’ or ‘e’.

* Optional sign: either ‘+’ or ‘-’.

* One or more decimal digits.

At least one of the integer part or the fractional part must be
present. The floating point number has the usual base-10 value.

‘as’ does all processing using integers. Flonums are computed
independently of any floating point hardware in the computer running
‘as’.

1.37 Sections

Sections and Relocation

* Menu:

*
Secs Background

Background

*
Ld Sections

ld Sections

*
As Sections

as Internal Sections

*
Sub-Sections

Sub-Sections

*
bss

bss Section

as 22 / 126

1.38 Secs Background

Background
==========

Roughly, a section is a range of addresses, with no gaps; all data
"in" those addresses is treated the same for some particular purpose.
For example there may be a "read only" section.

The linker ‘ld’ reads many object files (partial programs) and
combines their contents to form a runnable program. When ‘as’ emits an
object file, the partial program is assumed to start at address 0.
‘ld’ assigns the final addresses for the partial program, so that
different partial programs do not overlap. This is actually an
oversimplification, but it suffices to explain how ‘as’ uses sections.

‘ld’ moves blocks of bytes of your program to their run-time
addresses. These blocks slide to their run-time addresses as rigid
units; their length does not change and neither does the order of bytes
within them. Such a rigid unit is called a *section*. Assigning
run-time addresses to sections is called "relocation". It includes the
task of adjusting mentions of object-file addresses so they refer to
the proper run-time addresses. For the H8/300 and H8/500, and for the
Hitachi SH, ‘as’ pads sections if needed to ensure they end on a word
(sixteen bit) boundary.

An object file written by ‘as’ has at least three sections, any of
which may be empty. These are named "text", "data" and "bss" sections.

When it generates COFF output, ‘as’ can also generate whatever other
named sections you specify using the ‘.section’ directive (*note
‘.section’: Section.). If you do not use any directives that place
output in the ‘.text’ or ‘.data’ sections, these sections still exist,
but are empty.

When ‘as’ generates SOM or ELF output for the HPPA, ‘as’ can also
generate whatever other named sections you specify using the ‘.space’
and ‘.subspace’ directives. See ‘HP9000 Series 800 Assembly Language
Reference Manual’ (HP 92432-90001) for details on the ‘.space’ and
‘.subspace’ assembler directives.

Additionally, ‘as’ uses different names for the standard text, data,
and bss sections when generating SOM output. Program text is placed
into the ‘$CODE$’ section, data into ‘$DATA$’, and BSS into ‘BSS’.

Within the object file, the text section starts at address ‘0’, the
data section follows, and the bss section follows the data section.

When generating either SOM or ELF output files on the HPPA, the text
section starts at address ‘0’, the data section at address ‘0x4000000’,
and the bss section follows the data section.

To let ‘ld’ know which data changes when the sections are relocated,
and how to change that data, ‘as’ also writes to the object file
details of the relocation needed. To perform relocation ‘ld’ must
know, each time an address in the object file is mentioned:

as 23 / 126

* Where in the object file is the beginning of this reference to an
address?

* How long (in bytes) is this reference?

* Which section does the address refer to? What is the numeric
value of

(ADDRESS) - (START-ADDRESS OF SECTION)?

* Is the reference to an address "Program-Counter relative"?

In fact, every address ‘as’ ever uses is expressed as
(SECTION) + (OFFSET INTO SECTION)

Further, most expressions ‘as’ computes have this section-relative
nature. (For some object formats, such as SOM for the HPPA, some
expressions are symbol-relative instead.)

In this manual we use the notation {SECNAME N} to mean "offset N
into section SECNAME."

Apart from text, data and bss sections you need to know about the
"absolute" section. When ‘ld’ mixes partial programs, addresses in the
absolute section remain unchanged. For example, address ‘{absolute 0}’
is "relocated" to run-time address 0 by ‘ld’. Although the linker
never arranges two partial programs’ data sections with overlapping
addresses after linking, *by definition* their absolute sections must
overlap. Address ‘{absolute 239}’ in one part of a program is always
the same address when the program is running as address ‘{absolute
239}’ in any other part of the program.

The idea of sections is extended to the "undefined" section. Any
address whose section is unknown at assembly time is by definition
rendered {undefined U}--where U is filled in later. Since numbers are
always defined, the only way to generate an undefined address is to
mention an undefined symbol. A reference to a named common block would
be such a symbol: its value is unknown at assembly time so it has
section *undefined*.

By analogy the word *section* is used to describe groups of sections
in the linked program. ‘ld’ puts all partial programs’ text sections
in contiguous addresses in the linked program. It is customary to
refer to the *text section* of a program, meaning all the addresses of
all partial programs’ text sections. Likewise for data and bss
sections.

Some sections are manipulated by ‘ld’; others are invented for use
of ‘as’ and have no meaning except during assembly.

1.39 Ld Sections

ld Sections
===========

‘ld’ deals with just four kinds of sections, summarized below.

as 24 / 126

named sections
text section
data section

These sections hold your program. ‘as’ and ‘ld’ treat them as
separate but equal sections. Anything you can say of one section
is true another. When the program is running, however, it is
customary for the text section to be unalterable. The text
section is often shared among processes: it contains instructions,
constants and the like. The data section of a running program is
usually alterable: for example, C variables would be stored in the
data section.

bss section
This section contains zeroed bytes when your program begins
running. It is used to hold unitialized variables or common
storage. The length of each partial program’s bss section is
important, but because it starts out containing zeroed bytes there
is no need to store explicit zero bytes in the object file. The
bss section was invented to eliminate those explicit zeros from
object files.

absolute section
Address 0 of this section is always "relocated" to runtime address
0. This is useful if you want to refer to an address that ‘ld’
must not change when relocating. In this sense we speak of
absolute addresses being "unrelocatable": they do not change
during relocation.

undefined section
This "section" is a catch-all for address references to objects
not in the preceding sections.

An idealized example of three relocatable sections follows. The
example uses the traditional section names ‘.text’ and ‘.data’. Memory
addresses are on the horizontal axis.

+-----+----+--+
partial program # 1: |ttttt|dddd|00|

+-----+----+--+

text data bss
seg. seg. seg.

+---+---+---+
partial program # 2: |TTT|DDD|000|

+---+---+---+

+--+---+-----+--+----+---+-----+~~
linked program: | |TTT|ttttt| |dddd|DDD|00000|

+--+---+-----+--+----+---+-----+~~

addresses: 0 ...

as 25 / 126

1.40 As Sections

as Internal Sections
====================

These sections are meant only for the internal use of ‘as’. They
have no meaning at run-time. You do not really need to know about these
sections for most purposes; but they can be mentioned in ‘as’ warning
messages, so it might be helpful to have an idea of their meanings to
‘as’. These sections are used to permit the value of every expression
in your assembly language program to be a section-relative address.

ASSEMBLER-INTERNAL-LOGIC-ERROR!
An internal assembler logic error has been found. This means
there is a bug in the assembler.

expr section
The assembler stores complex expression internally as combinations
of symbols. When it needs to represent an expression as a symbol,
it puts it in the expr section.

1.41 Sub-Sections

Sub-Sections
============

Assembled bytes conventionally fall into two sections: text and data.
You may have separate groups of data in named sections that you want to
end up near to each other in the object file, even though they are not
contiguous in the assembler source. ‘as’ allows you to use
"subsections" for this purpose. Within each section, there can be
numbered subsections with values from 0 to 8192. Objects assembled
into the same subsection go into the object file together with other
objects in the same subsection. For example, a compiler might want to
store constants in the text section, but might not want to have them
interspersed with the program being assembled. In this case, the
compiler could issue a ‘.text 0’ before each section of code being
output, and a ‘.text 1’ before each group of constants being output.

Subsections are optional. If you do not use subsections, everything
goes in subsection number zero.

Each subsection is zero-padded up to a multiple of four bytes.
(Subsections may be padded a different amount on different flavors of
‘as’.)

Subsections appear in your object file in numeric order, lowest
numbered to highest. (All this to be compatible with other people’s
assemblers.) The object file contains no representation of subsections;
‘ld’ and other programs that manipulate object files see no trace of
them. They just see all your text subsections as a text section, and
all your data subsections as a data section.

To specify which subsection you want subsequent statements assembled

as 26 / 126

into, use a numeric argument to specify it, in a ‘.text EXPRESSION’ or
a ‘.data EXPRESSION’ statement. When generating COFF output, you can
also use an extra subsection argument with arbitrary named sections:
‘.section NAME, EXPRESSION’. EXPRESSION should be an absolute
expression. (*Note Expressions .) If you just say ‘.text’ then
‘.text 0’ is assumed. Likewise ‘.data’ means ‘.data 0’. Assembly
begins in ‘text 0’. For instance:

.text 0 # The default subsection is text 0 anyway.

.ascii "This lives in the first text subsection. *"

.text 1

.ascii "But this lives in the second text subsection."

.data 0

.ascii "This lives in the data section,"

.ascii "in the first data subsection."

.text 0

.ascii "This lives in the first text section,"

.ascii "immediately following the asterisk (*)."

Each section has a "location counter" incremented by one for every
byte assembled into that section. Because subsections are merely a
convenience restricted to ‘as’ there is no concept of a subsection
location counter. There is no way to directly manipulate a location
counter--but the ‘.align’ directive changes it, and any label
definition captures its current value. The location counter of the
section where statements are being assembled is said to be the "active"
location counter.

1.42 bss

bss Section
===========

The bss section is used for local common variable storage. You may
allocate address space in the bss section, but you may not dictate data
to load into it before your program executes. When your program starts
running, all the contents of the bss section are zeroed bytes.

Addresses in the bss section are allocated with special directives;
you may not assemble anything directly into the bss section. Hence
there are no bss subsections. *Note ‘.comm’: Comm, *note ‘.lcomm’:
Lcomm..

1.43 Symbols

Symbols

Symbols are a central concept: the programmer uses symbols to name
things, the linker uses symbols to link, and the debugger uses symbols
to debug.

Warning: ‘as’ does not place symbols in the object file in the

as 27 / 126

same order they were declared. This may break some debuggers.

* Menu:

*
Labels

Labels

*
Setting Symbols

Giving Symbols Other Values

*
Symbol Names

Symbol Names

*
Dot

The Special Dot Symbol

*
Symbol Attributes

Symbol Attributes

1.44 Labels

Labels
======

A "label" is written as a symbol immediately followed by a colon
‘:’. The symbol then represents the current value of the active
location counter, and is, for example, a suitable instruction operand.
You are warned if you use the same symbol to represent two different
locations: the first definition overrides any other definitions.

On the HPPA, the usual form for a label need not be immediately
followed by a colon, but instead must start in column zero. Only one
label may be defined on a single line. To work around this, the HPPA
version of ‘as’ also provides a special directive ‘.label’ for defining
labels more flexibly.

1.45 Setting Symbols

Giving Symbols Other Values
===========================

A symbol can be given an arbitrary value by writing a symbol,
followed by an equals sign ‘=’, followed by an expression (*note

Expressions
.). This is equivalent to using the ‘.set’ directive.

*Note ‘.set’: Set.

as 28 / 126

1.46 Symbol Names

Symbol Names
============

Symbol names begin with a letter or with one of ‘._’. On most
machines, you can also use ‘$’ in symbol names; exceptions are noted in

*Note Machine Dependencies . That character may be followed by any
string of digits, letters, dollar signs (unless otherwise noted in

*Note Machine Dependencies), and underscores. For the AMD 29K
family, ‘?’ is also allowed in the body of a symbol name, though not at
its beginning.

Case of letters is significant: ‘foo’ is a different symbol name
than ‘Foo’.

Each symbol has exactly one name. Each name in an assembly language
program refers to exactly one symbol. You may use that symbol name any
number of times in a program.

Local Symbol Names

Local symbols help compilers and programmers use names temporarily.
There are ten local symbol names, which are re-used throughout the
program. You may refer to them using the names ‘0’ ‘1’ ... ‘9’. To
define a local symbol, write a label of the form ‘N:’ (where N
represents any digit). To refer to the most recent previous definition
of that symbol write ‘Nb’, using the same digit as when you defined the
label. To refer to the next definition of a local label, write
‘Nf’--where N gives you a choice of 10 forward references. The ‘b’
stands for "backwards" and the ‘f’ stands for "forwards".

Local symbols are not emitted by the current GNU C compiler.

There is no restriction on how you can use these labels, but
remember that at any point in the assembly you can refer to at most 10
prior local labels and to at most 10 forward local labels.

Local symbol names are only a notation device. They are immediately
transformed into more conventional symbol names before the assembler
uses them. The symbol names stored in the symbol table, appearing in
error messages and optionally emitted to the object file have these
parts:

‘L’
All local labels begin with ‘L’. Normally both ‘as’ and ‘ld’
forget symbols that start with ‘L’. These labels are used for
symbols you are never intended to see. If you use the ‘-L’ option
then ‘as’ retains these symbols in the object file. If you also
instruct ‘ld’ to retain these symbols, you may use them in
debugging.

‘DIGIT’
If the label is written ‘0:’ then the digit is ‘0’. If the label
is written ‘1:’ then the digit is ‘1’. And so on up through ‘9:’.

as 29 / 126

?A’
This unusual character is included so you do not accidentally
invent a symbol of the same name. The character has ASCII value
‘\001’.

‘*ordinal number*’
This is a serial number to keep the labels distinct. The first
‘0:’ gets the number ‘1’; The 15th ‘0:’ gets the number ‘15’;

etc.. Likewise for the other labels ‘1:’ through ‘9:’.

For instance, the first ‘1:’ is named ‘L?A1’, the 44th ‘3:’ is named
‘L?A44’.

1.47 Dot

The Special Dot Symbol
======================

The special symbol ‘.’ refers to the current address that ‘as’ is
assembling into. Thus, the expression ‘melvin: .long .’ defines
‘melvin’ to contain its own address. Assigning a value to ‘.’ is
treated the same as a ‘.org’ directive. Thus, the expression ‘.=.+4’
is the same as saying ‘.space 4’.

1.48 Symbol Attributes

Symbol Attributes
=================

Every symbol has, as well as its name, the attributes "Value" and
"Type". Depending on output format, symbols can also have auxiliary
attributes.

If you use a symbol without defining it, ‘as’ assumes zero for all
these attributes, and probably won’t warn you. This makes the symbol
an externally defined symbol, which is generally what you would want.

* Menu:

*
Symbol Value

Value

*
Symbol Type

Type

*
a.out Symbols

Symbol Attributes: ‘a.out’

as 30 / 126

*
COFF Symbols

Symbol Attributes for COFF

*
SOM Symbols

Symbol Attributes for SOM

1.49 Symbol Value

Value

The value of a symbol is (usually) 32 bits. For a symbol which
labels a location in the text, data, bss or absolute sections the value
is the number of addresses from the start of that section to the label.
Naturally for text, data and bss sections the value of a symbol changes
as ‘ld’ changes section base addresses during linking. Absolute
symbols’ values do not change during linking: that is why they are
called absolute.

The value of an undefined symbol is treated in a special way. If it
is 0 then the symbol is not defined in this assembler source file, and
‘ld’ tries to determine its value from other files linked into the same
program. You make this kind of symbol simply by mentioning a symbol
name without defining it. A non-zero value represents a ‘.comm’ common
declaration. The value is how much common storage to reserve, in bytes
(addresses). The symbol refers to the first address of the allocated
storage.

1.50 Symbol Type

Type

The type attribute of a symbol contains relocation (section)
information, any flag settings indicating that a symbol is external, and
(optionally), other information for linkers and debuggers. The exact
format depends on the object-code output format in use.

1.51 a.out Symbols

Symbol Attributes: ‘a.out’

* Menu:

*
Symbol Desc

as 31 / 126

Descriptor

*
Symbol Other

Other

1.52 Symbol Desc

Descriptor
..........

This is an arbitrary 16-bit value. You may establish a symbol’s
descriptor value by using a ‘.desc’ statement (*note ‘.desc’: Desc.).
A descriptor value means nothing to ‘as’.

1.53 Symbol Other

Other
.....

This is an arbitrary 8-bit value. It means nothing to ‘as’.

1.54 COFF Symbols

Symbol Attributes for COFF

The COFF format supports a multitude of auxiliary symbol attributes;
like the primary symbol attributes, they are set between ‘.def’ and
‘.endef’ directives.

Primary Attributes
..................

The symbol name is set with ‘.def’; the value and type,
respectively, with ‘.val’ and ‘.type’.

Auxiliary Attributes
....................

The ‘as’ directives ‘.dim’, ‘.line’, ‘.scl’, ‘.size’, and ‘.tag’ can
generate auxiliary symbol table information for COFF.

1.55 SOM Symbols

as 32 / 126

Symbol Attributes for SOM

The SOM format for the HPPA supports a multitude of symbol
attributes set with the ‘.EXPORT’ and ‘.IMPORT’ directives.

The attributes are described in ‘HP9000 Series 800 Assembly Language
Reference Manual’ (HP 92432-90001) under the ‘IMPORT’ and ‘EXPORT’
assembler directive documentation.

1.56 Expressions

Expressions

An "expression" specifies an address or numeric value. Whitespace
may precede and/or follow an expression.

The result of an expression must be an absolute number, or else an
offset into a particular section. If an expression is not absolute,
and there is not enough information when ‘as’ sees the expression to
know its section, a second pass over the source program might be
necessary to interpret the expression--but the second pass is currently
not implemented. ‘as’ aborts with an error message in this situation.

* Menu:

*
Empty Exprs

Empty Expressions

*
Integer Exprs

Integer Expressions

1.57 Empty Exprs

Empty Expressions
=================

An empty expression has no value: it is just whitespace or null.
Wherever an absolute expression is required, you may omit the
expression, and ‘as’ assumes a value of (absolute) 0. This is
compatible with other assemblers.

1.58 Integer Exprs

Integer Expressions
===================

as 33 / 126

An "integer expression" is one or more *arguments* delimited by

operators.

* Menu:

*
Arguments

Arguments

*
Operators

Operators

*
Prefix Ops

Prefix Operators

*
Infix Ops

Infix Operators

1.59 Arguments

Arguments

"Arguments" are symbols, numbers or subexpressions. In other
contexts arguments are sometimes called "arithmetic operands". In this
manual, to avoid confusing them with the "instruction operands" of the
machine language, we use the term "argument" to refer to parts of
expressions only, reserving the word "operand" to refer only to machine
instruction operands.

Symbols are evaluated to yield {SECTION NNN} where SECTION is one of
text, data, bss, absolute, or undefined. NNN is a signed, 2’s
complement 32 bit integer.

Numbers are usually integers.

A number can be a flonum or bignum. In this case, you are warned
that only the low order 32 bits are used, and ‘as’ pretends these 32
bits are an integer. You may write integer-manipulating instructions
that act on exotic constants, compatible with other assemblers.

Subexpressions are a left parenthesis ‘(’ followed by an integer
expression, followed by a right parenthesis ‘)’; or a prefix operator
followed by an argument.

1.60 Operators

Operators

as 34 / 126

"Operators" are arithmetic functions, like ‘+’ or ‘%’. Prefix
operators are followed by an argument. Infix operators appear between
their arguments. Operators may be preceded and/or followed by
whitespace.

1.61 Prefix Ops

Prefix Operator

‘as’ has the following "prefix operators". They each take one
argument, which must be absolute.

‘-’
"Negation". Two’s complement negation.

‘~’
"Complementation". Bitwise not.

1.62 Infix Ops

Infix Operators

"Infix operators" take two arguments, one on either side. Operators
have precedence, but operations with equal precedence are performed left
to right. Apart from ‘+’ or ‘-’, both arguments must be absolute, and
the result is absolute.

1. Highest Precedence

‘*’
"Multiplication".

‘/’
"Division". Truncation is the same as the C operator ‘/’

‘%’
"Remainder".

‘<’
‘<<’

"Shift Left". Same as the C operator ‘<<’.

‘>’
‘>>’

"Shift Right". Same as the C operator ‘>>’.

2. Intermediate precedence

‘|’
"Bitwise Inclusive Or".

as 35 / 126

‘&’
"Bitwise And".

‘^’
"Bitwise Exclusive Or".

‘!’
"Bitwise Or Not".

3. Lowest Precedence

‘+’
"Addition". If either argument is absolute, the result has
the section of the other argument. You may not add together
arguments from different sections.

‘-’
"Subtraction". If the right argument is absolute, the result
has the section of the left argument. If both arguments are
in the same section, the result is absolute. You may not
subtract arguments from different sections.

In short, it’s only meaningful to add or subtract the *offsets* in an
address; you can only have a defined section in one of the two
arguments.

1.63 Pseudo Ops

Assembler Directives

All assembler directives have names that begin with a period (‘.’).
The rest of the name is letters, usually in lower case.

This chapter discusses directives that are available regardless of
the target machine configuration for the GNU assembler. Some machine
configurations provide additional directives. *Note Machine
Dependencies .

* Menu:

*
Abort

‘.abort’

*
ABORT

‘.ABORT’

*
Align

‘.align ABS-EXPR , ABS-EXPR’

*
App-File

as 36 / 126

‘.app-file STRING’

*
Ascii

‘.ascii "STRING"’...

*
Asciz

‘.asciz "STRING"’...

*
Byte

‘.byte EXPRESSIONS’

*
Comm

‘.comm SYMBOL , LENGTH ’

*
Data

‘.data SUBSECTION’

*
Def

‘.def NAME’

*
Desc

‘.desc SYMBOL, ABS-EXPRESSION’

*
Dim

‘.dim’

*
Double

‘.double FLONUMS’

*
Eject

‘.eject’

*
Else

‘.else’

*
Endef

‘.endef’

*
Endif

‘.endif’

*
Equ

‘.equ SYMBOL, EXPRESSION’

*
Extern

‘.extern’

*
File

‘.file STRING’

as 37 / 126

*
Fill

‘.fill REPEAT , SIZE , VALUE’

*
Float

‘.float FLONUMS’

*
Global

‘.global SYMBOL’, ‘.globl SYMBOL’

*
hword

‘.hword EXPRESSIONS’

*
Ident

‘.ident’

*
If

‘.if ABSOLUTE EXPRESSION’

*
Include

‘.include "FILE"’

*
Int

‘.int EXPRESSIONS’

*
Lcomm

‘.lcomm SYMBOL , LENGTH’

*
Lflags

‘.lflags’

*
Line

‘.line LINE-NUMBER’

*
Ln

‘.ln LINE-NUMBER’

*
List

‘.list’

*
Long

‘.long EXPRESSIONS’

*
Nolist

‘.nolist’

*
Octa

‘.octa BIGNUMS’

*
Org

‘.org NEW-LC , FILL’

*
Psize

‘.psize LINES, COLUMNS’

as 38 / 126

*
Quad

‘.quad BIGNUMS’

*
Sbttl

‘.sbttl "SUBHEADING"’

*
Scl

‘.scl CLASS’

*
Section

‘.section NAME, SUBSECTION’

*
Set

‘.set SYMBOL, EXPRESSION’

*
Short

‘.short EXPRESSIONS’

*
Single

‘.single FLONUMS’

*
Size

‘.size’

*
Space

‘.space SIZE , FILL’

*
Stab

‘.stabd, .stabn, .stabs’

*
String

‘.string "STR"’

*
Tag

‘.tag STRUCTNAME’

*
Text

‘.text SUBSECTION’

*
Title

‘.title "HEADING"’

*
Type

‘.type INT’

*
Val

as 39 / 126

‘.val ADDR’

*
Word

‘.word EXPRESSIONS’

*
Deprecated

Deprecated Directives

1.64 Abort

‘.abort’
========

This directive stops the assembly immediately. It is for
compatibility with other assemblers. The original idea was that the
assembly language source would be piped into the assembler. If the
sender of the source quit, it could use this directive tells ‘as’ to
quit also. One day ‘.abort’ will not be supported.

1.65 ABORT

‘.ABORT’
========

When producing COFF output, ‘as’ accepts this directive as a synonym
for ‘.abort’.

When producing ‘b.out’ output, ‘as’ accepts this directive, but
ignores it.

1.66 Align

‘.align ABS-EXPR , ABS-EXPR’
============================

Pad the location counter (in the current subsection) to a particular
storage boundary. The first expression (which must be absolute) is the
number of low-order zero bits the location counter must have after
advancement. For example ‘.align 3’ advances the location counter
until it a multiple of 8. If the location counter is already a
multiple of 8, no change is needed.

For the HPPA, the first expression (which must be absolute) is the
alignment request in bytes. For example ‘.align 8’ advances the
location counter until it is a multiple of 8. If the location counter
is already a multiple of 8, no change is needed.

The second expression (also absolute) gives the value to be stored in

as 40 / 126

the padding bytes. It (and the comma) may be omitted. If it is
omitted, the padding bytes are zero.

1.67 App-File

‘.app-file STRING’
==================

‘.app-file’ (which may also be spelled ‘.file’) tells ‘as’ that we
are about to start a new logical file. STRING is the new file name.
In general, the filename is recognized whether or not it is surrounded
by quotes ‘"’; but if you wish to specify an empty file name is
permitted, you must give the quotes-‘""’. This statement may go away in
future: it is only recognized to be compatible with old ‘as’ programs.

1.68 Ascii

‘.ascii "STRING"’...
====================

‘.ascii’ expects zero or more string literal
Strings
.)

separated by commas. It assembles each string (with no automatic
trailing zero byte) into consecutive addresses.

1.69 Asciz

‘.asciz "STRING"’...
====================

‘.asciz’ is just like ‘.ascii’, but each string is followed by a
zero byte. The "z" in ‘.asciz’ stands for "zero".

1.70 Byte

‘.byte EXPRESSIONS’
===================

‘.byte’ expects zero or more expressions, separated by commas. Each
expression is assembled into the next byte.

as 41 / 126

1.71 Comm

‘.comm SYMBOL , LENGTH ’
========================

‘.comm’ declares a named common area in the bss section. Normally
‘ld’ reserves memory addresses for it during linking, so no partial
program defines the location of the symbol. Use ‘.comm’ to tell ‘ld’
that it must be at least LENGTH bytes long. ‘ld’ allocates space for
each ‘.comm’ symbol that is at least as long as the longest ‘.comm’
request in any of the partial programs linked. LENGTH is an absolute
expression.

The syntax for ‘.comm’ differs slightly on the HPPA. The syntax is
‘SYMBOL .comm, LENGTH’; SYMBOL is optional.

1.72 Data

‘.data SUBSECTION’
==================

‘.data’ tells ‘as’ to assemble the following statements onto the end
of the data subsection numbered SUBSECTION (which is an absolute
expression). If SUBSECTION is omitted, it defaults to zero.

1.73 Def

‘.def NAME’
===========

Begin defining debugging information for a symbol NAME; the
definition extends until the ‘.endef’ directive is encountered.

This directive is only observed when ‘as’ is configured for COFF
format output; when producing ‘b.out’, ‘.def’ is recognized, but
ignored.

1.74 Desc

‘.desc SYMBOL, ABS-EXPRESSION’
==============================

This directive sets the descriptor of the symbol (*note Symbol
Attributes .) to the low 16 bits of an absolute expression.

The ‘.desc’ directive is not available when ‘as’ is configured for
COFF output; it is only for ‘a.out’ or ‘b.out’ object format. For the
sake of compatibility, ‘as’ accepts it, but produces no output, when
configured for COFF.

as 42 / 126

1.75 Dim

‘.dim’
======

This directive is generated by compilers to include auxiliary
debugging information in the symbol table. It is only permitted inside
‘.def’/‘.endef’ pairs.

‘.dim’ is only meaningful when generating COFF format output; when
‘as’ is generating ‘b.out’, it accepts this directive but ignores it.

1.76 Double

‘.double FLONUMS’
=================

‘.double’ expects zero or more flonums, separated by commas. It
assembles floating point numbers. The exact kind of floating point
numbers emitted depends on how ‘as’ is configured. *Note Machine
Dependencies .

1.77 Eject

‘.eject’
========

Force a page break at this point, when generating assembly listings.

1.78 Else

‘.else’
=======

‘.else’ is part of the ‘as’ support for conditional assembly; *note
‘.if’: If.. It marks the beginning of a section of code to be
assembled if the condition for the preceding ‘.if’ was false.

1.79 Endef

‘.endef’
========

This directive flags the end of a symbol definition begun with
‘.def’.

‘.endef’ is only meaningful when generating COFF format output; if

as 43 / 126

‘as’ is configured to generate ‘b.out’, it accepts this directive but
ignores it.

1.80 Endif

‘.endif’
========

‘.endif’ is part of the ‘as’ support for conditional assembly; it
marks the end of a block of code that is only assembled conditionally.

*Note ‘.if’: If.

1.81 Equ

‘.equ SYMBOL, EXPRESSION’
=========================

This directive sets the value of SYMBOL to EXPRESSION. It is
synonymous with ‘.set’; *note ‘.set’: Set..

The syntax for ‘equ’ on the HPPA is ‘SYMBOL .equ EXPRESSION’.

1.82 Extern

‘.extern’
=========

‘.extern’ is accepted in the source program--for compatibility with
other assemblers--but it is ignored. ‘as’ treats all undefined symbols
as external.

1.83 File

‘.file STRING’
==============

‘.file’ (which may also be spelled ‘.app-file’) tells ‘as’ that we
are about to start a new logical file. STRING is the new file name.
In general, the filename is recognized whether or not it is surrounded
by quotes ‘"’; but if you wish to specify an empty file name, you must
give the quotes-‘""’. This statement may go away in future: it is only
recognized to be compatible with old ‘as’ programs. In some
configurations of ‘as’, ‘.file’ has already been removed to avoid
conflicts with other assemblers. *Note Machine Dependencies .

as 44 / 126

1.84 Fill

‘.fill REPEAT , SIZE , VALUE’
=============================

RESULT, SIZE and VALUE are absolute expressions. This emits REPEAT
copies of SIZE bytes. REPEAT may be zero or more. SIZE may be zero or
more, but if it is more than 8, then it is deemed to have the value 8,
compatible with other people’s assemblers. The contents of each REPEAT
bytes is taken from an 8-byte number. The highest order 4 bytes are
zero. The lowest order 4 bytes are VALUE rendered in the byte-order of
an integer on the computer ‘as’ is assembling for. Each SIZE bytes in
a repetition is taken from the lowest order SIZE bytes of this number.
Again, this bizarre behavior is compatible with other people’s
assemblers.

SIZE and VALUE are optional. If the second comma and VALUE are
absent, VALUE is assumed zero. If the first comma and following tokens
are absent, SIZE is assumed to be 1.

1.85 Float

‘.float FLONUMS’
================

This directive assembles zero or more flonums, separated by commas.
It has the same effect as ‘.single’. The exact kind of floating point
numbers emitted depends on how ‘as’ is configured. *Note Machine
Dependencies .

1.86 Global

‘.global SYMBOL’, ‘.globl SYMBOL’
=================================

‘.global’ makes the symbol visible to ‘ld’. If you define SYMBOL in
your partial program, its value is made available to other partial
programs that are linked with it. Otherwise, SYMBOL takes its
attributes from a symbol of the same name from another file linked into
the same program.

Both spellings (‘.globl’ and ‘.global’) are accepted, for
compatibility with other assemblers.

On the HPPA, ‘.global’ is not always enough to make it accessible to
other partial programs. You may need the HPPA-only ‘.EXPORT’ directive
as well. *Note HPPA Assembler Directives: HPPA Directives.

1.87 hword

as 45 / 126

‘.hword EXPRESSIONS’
====================

This expects zero or more EXPRESSIONS, and emits a 16 bit number for
each.

This directive is a synonym for ‘.short’; depending on the target
architecture, it may also be a synonym for ‘.word’.

1.88 Ident

‘.ident’
========

This directive is used by some assemblers to place tags in object
files. ‘as’ simply accepts the directive for source-file compatibility
with such assemblers, but does not actually emit anything for it.

1.89 If

‘.if ABSOLUTE EXPRESSION’
=========================

‘.if’ marks the beginning of a section of code which is only
considered part of the source program being assembled if the argument
(which must be an ABSOLUTE EXPRESSION) is non-zero. The end of the
conditional section of code must be marked by ‘.endif’ (*note ‘.endif’:
Endif.); optionally, you may include code for the alternative
condition, flagged by ‘.else’ (*note ‘.else’: Else..

The following variants of ‘.if’ are also supported:
‘.ifdef SYMBOL’

Assembles the following section of code if the specified SYMBOL
has been defined.

‘.ifndef SYMBOL’
‘ifnotdef SYMBOL’

Assembles the following section of code if the specified SYMBOL
has not been defined. Both spelling variants are equivalent.

1.90 Include

‘.include "FILE"’
=================

This directive provides a way to include supporting files at
specified points in your source program. The code from FILE is
assembled as if it followed the point of the ‘.include’; when the end
of the included file is reached, assembly of the original file

as 46 / 126

continues. You can control the search paths used with the ‘-I’
command-line option (*note Command-Line Options: Invoking.). Quotation
marks are required around FILE.

1.91 Int

‘.int EXPRESSIONS’
==================

Expect zero or more EXPRESSIONS, of any section, separated by commas.
For each expression, emit a number that, at run time, is the value of
that expression. The byte order and bit size of the number depends on
what kind of target the assembly is for.

1.92 Lcomm

‘.lcomm SYMBOL , LENGTH’
========================

Reserve LENGTH (an absolute expression) bytes for a local common
denoted by SYMBOL. The section and value of SYMBOL are those of the
new local common. The addresses are allocated in the bss section, so
that at run-time the bytes start off zeroed. SYMBOL is not declared
global (*note ‘.global’: Global.), so is normally not visible to ‘ld’.

The syntax for ‘.lcomm’ differs slightly on the HPPA. The syntax is
‘SYMBOL .lcomm, LENGTH’; SYMBOL is optional.

1.93 Lflags

‘.lflags’
=========

‘as’ accepts this directive, for compatibility with other
assemblers, but ignores it.

1.94 Line

‘.line LINE-NUMBER’
===================

Change the logical line number. LINE-NUMBER must be an absolute
expression. The next line has that logical line number. Therefore any
other statements on the current line (after a statement separator
character) are reported as on logical line number LINE-NUMBER - 1. One
day ‘as’ will no longer support this directive: it is recognized only
for compatibility with existing assembler programs.

as 47 / 126

Warning: In the AMD29K configuration of as, this command is not
available; use the synonym ‘.ln’ in that context.

Even though this is a directive associated with the ‘a.out’ or
‘b.out’ object-code formats, ‘as’ still recognizes it when producing
COFF output, and treats ‘.line’ as though it were the COFF ‘.ln’ *if*
it is found outside a ‘.def’/‘.endef’ pair.

Inside a ‘.def’, ‘.line’ is, instead, one of the directives used by
compilers to generate auxiliary symbol information for debugging.

1.95 Ln

‘.ln LINE-NUMBER’
=================

‘.ln’ is a synonym for ‘.line’.

1.96 List

‘.list’
=======

Control (in conjunction with the ‘.nolist’ directive) whether or not
assembly listings are generated. These two directives maintain an
internal counter (which is zero initially). ‘.list’ increments the
counter, and ‘.nolist’ decrements it. Assembly listings are generated
whenever the counter is greater than zero.

By default, listings are disabled. When you enable them (with the
‘-a’ command line option; *note Command-Line Options: Invoking.), the
initial value of the listing counter is one.

1.97 Long

‘.long EXPRESSIONS’
===================

‘.long’ is the same as ‘.int’, *note ‘.int’: Int..

1.98 Nolist

‘.nolist’
=========

Control (in conjunction with the ‘.list’ directive) whether or not

as 48 / 126

assembly listings are generated. These two directives maintain an
internal counter (which is zero initially). ‘.list’ increments the
counter, and ‘.nolist’ decrements it. Assembly listings are generated
whenever the counter is greater than zero.

1.99 Octa

‘.octa BIGNUMS’
===============

This directive expects zero or more bignums, separated by commas.
For each bignum, it emits a 16-byte integer.

The term "octa" comes from contexts in which a "word" is two bytes;
hence *octa*-word for 16 bytes.

1.100 Org

‘.org NEW-LC , FILL’
====================

Advance the location counter of the current section to NEW-LC.
nEW-LC is either an absolute expression or an expression with the same
section as the current subsection. That is, you can’t use ‘.org’ to
cross sections: if NEW-LC has the wrong section, the ‘.org’ directive
is ignored. To be compatible with former assemblers, if the section of
NEW-LC is absolute, ‘as’ issues a warning, then pretends the section of
NEW-LC is the same as the current subsection.

‘.org’ may only increase the location counter, or leave it
unchanged; you cannot use ‘.org’ to move the location counter backwards.

Because ‘as’ tries to assemble programs in one pass, NEW-LC may not
be undefined. If you really detest this restriction we eagerly await a
chance to share your improved assembler.

Beware that the origin is relative to the start of the section, not
to the start of the subsection. This is compatible with other people’s
assemblers.

When the location counter (of the current subsection) is advanced,
the intervening bytes are filled with FILL which should be an absolute
expression. If the comma and FILL are omitted, FILL defaults to zero.

1.101 Psize

‘.psize LINES , COLUMNS’
========================

Use this directive to declare the number of lines--and, optionally,

as 49 / 126

the number of columns--to use for each page, when generating listings.

If you do not use ‘.psize’, listings use a default line-count of 60.
You may omit the comma and COLUMNS specification; the default width is
200 columns.

‘as’ generates formfeeds whenever the specified number of lines is
exceeded (or whenever you explicitly request one, using ‘.eject’).

If you specify LINES as ‘0’, no formfeeds are generated save those
explicitly specified with ‘.eject’.

1.102 Quad

‘.quad BIGNUMS’
===============

‘.quad’ expects zero or more bignums, separated by commas. For each
bignum, it emits an 8-byte integer. If the bignum won’t fit in 8
bytes, it prints a warning message; and just takes the lowest order 8
bytes of the bignum.

The term "quad" comes from contexts in which a "word" is two bytes;
hence *quad*-word for 8 bytes.

1.103 Sbttl

‘.sbttl "SUBHEADING"’
=====================

Use SUBHEADING as the title (third line, immediately after the title
line) when generating assembly listings.

This directive affects subsequent pages, as well as the current page
if it appears within ten lines of the top of a page.

1.104 Scl

‘.scl CLASS’
============

Set the storage-class value for a symbol. This directive may only be
used inside a ‘.def’/‘.endef’ pair. Storage class may flag whether a
symbol is static or external, or it may record further symbolic
debugging information.

The ‘.scl’ directive is primarily associated with COFF output; when
configured to generate ‘b.out’ output format, ‘as’ accepts this
directive but ignores it.

as 50 / 126

1.105 Section

‘.section NAME, SUBSECTION’
===========================

Assemble the following code into end of subsection numbered
SUBSECTION in the COFF named section NAME. If you omit SUBSECTION,
‘as’ uses subsection number zero. ‘.section .text’ is equivalent to
the ‘.text’ directive; ‘.section .data’ is equivalent to the ‘.data’
directive.

1.106 Set

‘.set SYMBOL, EXPRESSION’
=========================

Set the value of SYMBOL to EXPRESSION. This changes SYMBOL’s value
and type to conform to EXPRESSION. If SYMBOL was flagged as external,
it remains flagged. (*Note Symbol Attributes .)

You may ‘.set’ a symbol many times in the same assembly.

If you ‘.set’ a global symbol, the value stored in the object file
is the last value stored into it.

The syntax for ‘set’ on the HPPA is ‘SYMBOL .set EXPRESSION’.

1.107 Short

‘.short EXPRESSIONS’
====================

‘.short’ is normally the same as ‘.word’. *Note ‘.word’: Word.

In some configurations, however, ‘.short’ and ‘.word’ generate
numbers of different lengths;

Machine Dependencies
..

1.108 Single

‘.single FLONUMS’
=================

This directive assembles zero or more flonums, separated by commas.
It has the same effect as ‘.float’. The exact kind of floating point
numbers emitted depends on how ‘as’ is configured. *Note Machine
Dependencies .

as 51 / 126

1.109 Size

‘.size’
=======

This directive is generated by compilers to include auxiliary
debugging information in the symbol table. It is only permitted inside
‘.def’/‘.endef’ pairs.

‘.size’ is only meaningful when generating COFF format output; when
‘as’ is generating ‘b.out’, it accepts this directive but ignores it.

1.110 Space

‘.space SIZE , FILL’
====================

This directive emits SIZE bytes, each of value FILL. Both SIZE and
FILL are absolute expressions. If the comma and FILL are omitted, FILL
is assumed to be zero.

Warning: ‘.space’ has a completely different meaning for HPPA
targets; use ‘.block’ as a substitute. See ‘HP9000 Series 800
Assembly Language Reference Manual’ (HP 92432-90001) for the
meaning of the ‘.space’ directive. *Note HPPA Assembler
Directives: HPPA Directives, for a summary.

On the AMD 29K, this directive is ignored; it is accepted for
compatibility with other AMD 29K assemblers.

Warning: In most versions of the GNU assembler, the directive
‘.space’ has the effect of ‘.block’ *Note Machine Dependencies .

1.111 Stab

‘.stabd, .stabn, .stabs’
========================

There are three directives that begin ‘.stab’. All emit symbols
(

Symbols
.), for use by symbolic debuggers. The symbols are not

entered in the ‘as’ hash table: they cannot be referenced elsewhere in
the source file. Up to five fields are required:

STRING
This is the symbol’s name. It may contain any character except
‘\000’, so is more general than ordinary symbol names. Some
debuggers used to code arbitrarily complex structures into symbol
names using this field.

TYPE

as 52 / 126

An absolute expression. The symbol’s type is set to the low 8
bits of this expression. Any bit pattern is permitted, but ‘ld’
and debuggers choke on silly bit patterns.

OTHER
An absolute expression. The symbol’s "other" attribute is set to
the low 8 bits of this expression.

DESC
An absolute expression. The symbol’s descriptor is set to the low
16 bits of this expression.

VALUE
An absolute expression which becomes the symbol’s value.

If a warning is detected while reading a ‘.stabd’, ‘.stabn’, or
‘.stabs’ statement, the symbol has probably already been created; you
get a half-formed symbol in your object file. This is compatible with
earlier assemblers!

‘.stabd TYPE , OTHER , DESC’
The "name" of the symbol generated is not even an empty string.
It is a null pointer, for compatibility. Older assemblers used a
null pointer so they didn’t waste space in object files with empty
strings.

The symbol’s value is set to the location counter, relocatably.
When your program is linked, the value of this symbol is the
address of the location counter when the ‘.stabd’ was assembled.

‘.stabn TYPE , OTHER , DESC , VALUE’
The name of the symbol is set to the empty string ‘""’.

‘.stabs STRING , TYPE , OTHER , DESC , VALUE’
All five fields are specified.

1.112 String

‘.string’ "STR"
===============

Copy the characters in STR to the object file. You may specify more
than one string to copy, separated by commas. Unless otherwise
specified for a particular machine, the assembler marks the end of each
string with a 0 byte. You can use any of the escape sequences
described in *Note Strings: Strings.

1.113 Tag

‘.tag STRUCTNAME’
=================

as 53 / 126

This directive is generated by compilers to include auxiliary
debugging information in the symbol table. It is only permitted inside
‘.def’/‘.endef’ pairs. Tags are used to link structure definitions in
the symbol table with instances of those structures.

‘.tag’ is only used when generating COFF format output; when ‘as’ is
generating ‘b.out’, it accepts this directive but ignores it.

1.114 Text

‘.text SUBSECTION’
==================

Tells ‘as’ to assemble the following statements onto the end of the
text subsection numbered SUBSECTION, which is an absolute expression.
If SUBSECTION is omitted, subsection number zero is used.

1.115 Title

‘.title "HEADING"’
==================

Use HEADING as the title (second line, immediately after the source
file name and pagenumber) when generating assembly listings.

This directive affects subsequent pages, as well as the current page
if it appears within ten lines of the top of a page.

1.116 Type

‘.type INT’
===========

This directive, permitted only within ‘.def’/‘.endef’ pairs, records
the integer INT as the type attribute of a symbol table entry.

‘.type’ is associated only with COFF format output; when ‘as’ is
configured for ‘b.out’ output, it accepts this directive but ignores it.

1.117 Val

‘.val ADDR’
===========

This directive, permitted only within ‘.def’/‘.endef’ pairs, records
the address ADDR as the value attribute of a symbol table entry.

as 54 / 126

‘.val’ is used only for COFF output; when ‘as’ is configured for
‘b.out’, it accepts this directive but ignores it.

1.118 Word

‘.word EXPRESSIONS’
===================

This directive expects zero or more EXPRESSIONS, of any section,
separated by commas.

The size of the number emitted, and its byte order, depend on what
target computer the assembly is for.

Warning: Special Treatment to support Compilers

Machines with a 32-bit address space, but that do less than 32-bit
addressing, require the following special treatment. If the machine of
interest to you does 32-bit addressing (or doesn’t require it; *note

Machine Dependencies
.), you can ignore this issue.

In order to assemble compiler output into something that works, ‘as’
occasionlly does strange things to ‘.word’ directives. Directives of
the form ‘.word sym1-sym2’ are often emitted by compilers as part of
jump tables. Therefore, when ‘as’ assembles a directive of the form
‘.word sym1-sym2’, and the difference between ‘sym1’ and ‘sym2’ does
not fit in 16 bits, ‘as’ creates a "secondary jump table", immediately
before the next label. This secondary jump table is preceded by a
short-jump to the first byte after the secondary table. This
short-jump prevents the flow of control from accidentally falling into
the new table. Inside the table is a long-jump to ‘sym2’. The
original ‘.word’ contains ‘sym1’ minus the address of the long-jump to
‘sym2’.

If there were several occurrences of ‘.word sym1-sym2’ before the
secondary jump table, all of them are adjusted. If there was a ‘.word
sym3-sym4’, that also did not fit in sixteen bits, a long-jump to
‘sym4’ is included in the secondary jump table, and the ‘.word’
directives are adjusted to contain ‘sym3’ minus the address of the
long-jump to ‘sym4’; and so on, for as many entries in the original
jump table as necessary.

1.119 Deprecated

Deprecated Directives
=====================

One day these directives won’t work. They are included for

as 55 / 126

compatibility with older assemblers.
.abort
.app-file
.line

1.120 Machine Dependencies

Machine Dependent Features

The machine instruction sets are (almost by definition) different on
each machine where ‘as’ runs. Floating point representations vary as
well, and ‘as’ often supports a few additional directives or
command-line options for compatibility with other assemblers on a
particular platform. Finally, some versions of ‘as’ support special
pseudo-instructions for branch optimization.

This chapter discusses most of these differences, though it does not
include details on any machine’s instruction set. For details on that
subject, see the hardware manufacturer’s manual.

* Menu:

*
Vax-Dependent

VAX Dependent Features

*
AMD29K-Dependent

AMD 29K Dependent Features

* H8/300-Dependent Hitachi H8/300 Dependent Features

* H8/500-Dependent Hitachi H8/500 Dependent Features

*
HPPA-Dependent

HPPA Dependent Features

*
SH-Dependent

Hitachi SH Dependent Features

*
i960-Dependent

Intel 80960 Dependent Features

*
M68K-Dependent

M680x0 Dependent Features

*
Sparc-Dependent

SPARC Dependent Features

as 56 / 126

*
Z8000-Dependent

Z8000 Dependent Features

*
MIPS-Dependent

MIPS Dependent Features

*
i386-Dependent

80386 Dependent Features

1.121 Vax-Dependent

VAX Dependent Features
======================

* Menu:

*
Vax-Opts

VAX Command-Line Options

*
VAX-float

VAX Floating Point

*
VAX-directives

Vax Machine Directives

*
VAX-opcodes

VAX Opcodes

*
VAX-branch

VAX Branch Improvement

*
VAX-operands

VAX Operands

*
VAX-no

Not Supported on VAX

1.122 Vax-Opts

VAX Command-Line Options

The Vax version of ‘as’ accepts any of the following options, gives
a warning message that the option was ignored and proceeds. These
options are for compatibility with scripts designed for other people’s

as 57 / 126

assemblers.

‘‘-D’ (Debug)’
‘‘-S’ (Symbol Table)’
‘‘-T’ (Token Trace)’

These are obsolete options used to debug old assemblers.

‘‘-d’ (Displacement size for JUMPs)’
This option expects a number following the ‘-d’. Like options
that expect filenames, the number may immediately follow the ‘-d’
(old standard) or constitute the whole of the command line
argument that follows ‘-d’ (GNU standard).

‘‘-V’ (Virtualize Interpass Temporary File)’
Some other assemblers use a temporary file. This option commanded
them to keep the information in active memory rather than in a
disk file. ‘as’ always does this, so this option is redundant.

‘‘-J’ (JUMPify Longer Branches)’
Many 32-bit computers permit a variety of branch instructions to
do the same job. Some of these instructions are short (and fast)
but have a limited range; others are long (and slow) but can
branch anywhere in virtual memory. Often there are 3 flavors of
branch: short, medium and long. Some other assemblers would emit
short and medium branches, unless told by this option to emit
short and long branches.

‘‘-t’ (Temporary File Directory)’
Some other assemblers may use a temporary file, and this option
takes a filename being the directory to site the temporary file.
Since ‘as’ does not use a temporary disk file, this option makes
no difference. ‘-t’ needs exactly one filename.

The Vax version of the assembler accepts two options when compiled
for VMS. They are ‘-h’, and ‘-+’. The ‘-h’ option prevents ‘as’ from
modifying the symbol-table entries for symbols that contain lowercase
characters (I think). The ‘-+’ option causes ‘as’ to print warning
messages if the FILENAME part of the object file, or any symbol name is
larger than 31 characters. The ‘-+’ option also inserts some code
following the ‘_main’ symbol so that the object file is compatible with
Vax-11 "C".

1.123 VAX-float

VAX Floating Point

Conversion of flonums to floating point is correct, and compatible
with previous assemblers. Rounding is towards zero if the remainder is
exactly half the least significant bit.

‘D’, ‘F’, ‘G’ and ‘H’ floating point formats are understood.

Immediate floating literals (*e.g.* ‘S‘$6.9’) are rendered
correctly. Again, rounding is towards zero in the boundary case.

as 58 / 126

The ‘.float’ directive produces ‘f’ format numbers. The ‘.double’
directive produces ‘d’ format numbers.

1.124 VAX-directives

Vax Machine Directives

The Vax version of the assembler supports four directives for
generating Vax floating point constants. They are described in the
table below.

‘.dfloat’
This expects zero or more flonums, separated by commas, and
assembles Vax ‘d’ format 64-bit floating point constants.

‘.ffloat’
This expects zero or more flonums, separated by commas, and
assembles Vax ‘f’ format 32-bit floating point constants.

‘.gfloat’
This expects zero or more flonums, separated by commas, and
assembles Vax ‘g’ format 64-bit floating point constants.

‘.hfloat’
This expects zero or more flonums, separated by commas, and
assembles Vax ‘h’ format 128-bit floating point constants.

1.125 VAX-opcodes

VAX Opcodes

All DEC mnemonics are supported. Beware that ‘case...’ instructions
have exactly 3 operands. The dispatch table that follows the ‘case...’
instruction should be made with ‘.word’ statements. This is compatible
with all unix assemblers we know of.

1.126 VAX-branch

VAX Branch Improvement

Certain pseudo opcodes are permitted. They are for branch
instructions. They expand to the shortest branch instruction that
reaches the target. Generally these mnemonics are made by substituting
‘j’ for ‘b’ at the start of a DEC mnemonic. This feature is included
both for compatibility and to help compilers. If you do not need this
feature, avoid these opcodes. Here are the mnemonics, and the code

as 59 / 126

they can expand into.

‘jbsb’
‘Jsb’ is already an instruction mnemonic, so we chose ‘jbsb’.
(byte displacement)

‘bsbb ...’

(word displacement)
‘bsbw ...’

(long displacement)
‘jsb ...’

‘jbr’
‘jr’

Unconditional branch.
(byte displacement)

‘brb ...’

(word displacement)
‘brw ...’

(long displacement)
‘jmp ...’

‘jCOND’
COND may be any one of the conditional branches ‘neq’, ‘nequ’,
‘eql’, ‘eqlu’, ‘gtr’, ‘geq’, ‘lss’, ‘gtru’, ‘lequ’, ‘vc’, ‘vs’,
‘gequ’, ‘cc’, ‘lssu’, ‘cs’. COND may also be one of the bit tests
‘bs’, ‘bc’, ‘bss’, ‘bcs’, ‘bsc’, ‘bcc’, ‘bssi’, ‘bcci’, ‘lbs’,
‘lbc’. NOTCOND is the opposite condition to COND.
(byte displacement)

‘bCOND ...’

(word displacement)
‘bNOTCOND foo ; brw ... ; foo:’

(long displacement)
‘bNOTCOND foo ; jmp ... ; foo:’

‘jacbX’
X may be one of ‘b d f g h l w’.
(word displacement)

‘OPCODE ...’

(long displacement)
OPCODE ..., foo ;
brb bar ;
foo: jmp ... ;
bar:

‘jaobYYY’
YYY may be one of ‘lss leq’.

‘jsobZZZ’
ZZZ may be one of ‘geq gtr’.
(byte displacement)

as 60 / 126

‘OPCODE ...’

(word displacement)
OPCODE ..., foo ;
brb bar ;
foo: brw DESTINATION ;
bar:

(long displacement)
OPCODE ..., foo ;
brb bar ;
foo: jmp DESTINATION ;
bar:

‘aobleq’
‘aoblss’
‘sobgeq’
‘sobgtr’

(byte displacement)
‘OPCODE ...’

(word displacement)
OPCODE ..., foo ;
brb bar ;
foo: brw DESTINATION ;
bar:

(long displacement)
OPCODE ..., foo ;
brb bar ;
foo: jmp DESTINATION ;
bar:

1.127 VAX-operands

VAX Operands

The immediate character is ‘$’ for Unix compatibility, not ‘#’ as
DEC writes it.

The indirect character is ‘*’ for Unix compatibility, not ‘@’ as DEC
writes it.

The displacement sizing character is ‘‘’ (an accent grave) for Unix
compatibility, not ‘^’ as DEC writes it. The letter preceding ‘‘’ may
have either case. ‘G’ is not understood, but all other letters (‘b i l
s w’) are understood.

Register names understood are ‘r0 r1 r2 ... r15 ap fp sp pc’. Upper
and lower case letters are equivalent.

For instance
tstb *w‘$4(r5)

as 61 / 126

Any expression is permitted in an operand. Operands are comma
separated.

1.128 VAX-no

Not Supported on VAX

Vax bit fields can not be assembled with ‘as’. Someone can add the
required code if they really need it.

1.129 AMD29K-Dependent

AMD 29K Dependent Features
==========================

* Menu:

*
AMD29K Options

Options

*
AMD29K Syntax

Syntax

*
AMD29K Floating Point

Floating Point

*
AMD29K Directives

AMD 29K Machine Directives

*
AMD29K Opcodes

Opcodes

1.130 AMD29K Options

Options

‘as’ has no additional command-line options for the AMD 29K family.

1.131 AMD29K Syntax

Syntax

as 62 / 126

* Menu:

*
AMD29K-Chars

Special Characters

*
AMD29K-Regs

Register Names

1.132 AMD29K-Chars

Special Characters
..................

‘;’ is the line comment character.

‘@’ can be used instead of a newline to separate statements.

The character ‘?’ is permitted in identifiers (but may not begin an
identifier).

1.133 AMD29K-Regs

Register Names
..............

General-purpose registers are represented by predefined symbols of
the form ‘GRNNN’ (for global registers) or ‘LRNNN’ (for local
registers), where NNN represents a number between ‘0’ and ‘127’,
written with no leading zeros. The leading letters may be in either
upper or lower case; for example, ‘gr13’ and ‘LR7’ are both valid
register names.

You may also refer to general-purpose registers by specifying the
register number as the result of an expression (prefixed with ‘%%’ to
flag the expression as a register number):

%%EXPRESSION

--where EXPRESSION must be an absolute expression evaluating to a
number between ‘0’ and ‘255’. The range [0, 127] refers to global
registers, and the range [128, 255] to local registers.

In addition, ‘as’ understands the following protected
special-purpose register names for the AMD 29K family:

vab chd pc0
ops chc pc1
cps rbp pc2
cfg tmc mmu
cha tmr lru

as 63 / 126

These unprotected special-purpose register names are also recognized:
ipc alu fpe
ipa bp inte
ipb fc fps
q cr exop

1.134 AMD29K Floating Point

Floating Point

The AMD 29K family uses IEEE floating-point numbers.

1.135 AMD29K Directives

AMD 29K Machine Directives

‘.block SIZE , FILL’
This directive emits SIZE bytes, each of value FILL. Both SIZE
and FILL are absolute expressions. If the comma and FILL are
omitted, FILL is assumed to be zero.

In other versions of the GNU assembler, this directive is called
‘.space’.

‘.cputype’
This directive is ignored; it is accepted for compatibility with
other AMD 29K assemblers.

‘.file’
This directive is ignored; it is accepted for compatibility with
other AMD 29K assemblers.

Warning: in other versions of the GNU assembler, ‘.file’ is
used for the directive called ‘.app-file’ in the AMD 29K
support.

‘.line’
This directive is ignored; it is accepted for compatibility with
other AMD 29K assemblers.

‘.sect’
This directive is ignored; it is accepted for compatibility with
other AMD 29K assemblers.

‘.use SECTION NAME’
Establishes the section and subsection for the following code;
SECTION NAME may be one of ‘.text’, ‘.data’, ‘.data1’, or ‘.lit’.
With one of the first three SECTION NAME options, ‘.use’ is
equivalent to the machine directive SECTION NAME; the remaining
case, ‘.use .lit’, is the same as ‘.data 200’.

as 64 / 126

1.136 AMD29K Opcodes

Opcodes

‘as’ implements all the standard AMD 29K opcodes. No additional
pseudo-instructions are needed on this family.

For information on the 29K machine instruction set, see ‘Am29000
User’s Manual’, Advanced Micro Devices, Inc.

1.137 H8/300-Dependent

H8/300 Dependent Features
=========================

* Menu:

* H8/300 Options Options

* H8/300 Syntax Syntax

* H8/300 Floating Point Floating Point

* H8/300 Directives H8/300 Machine Directives

* H8/300 Opcodes Opcodes

1.138 H8/300 Options

Options

‘as’ has no additional command-line options for the Hitachi H8/300
family.

1.139 H8/300 Syntax

Syntax

* Menu:

* H8/300-Chars Special Characters

* H8/300-Regs Register Names

* H8/300-Addressing Addressing Modes

1.140 H8/300-Chars

as 65 / 126

Special Characters
..................

‘;’ is the line comment character.

‘$’ can be used instead of a newline to separate statements.
Therefore *you may not use ‘$’ in symbol names* on the H8/300.

1.141 H8/300-Regs

Register Names
..............

You can use predefined symbols of the form ‘rNh’ and ‘rNl’ to refer
to the H8/300 registers as sixteen 8-bit general-purpose registers. N
is a digit from ‘0’ to ‘7’); for instance, both ‘r0h’ and ‘r7l’ are
valid register names.

You can also use the eight predefined symbols ‘rN’ to refer to the
H8/300 registers as 16-bit registers (you must use this form for
addressing).

On the H8/300H, you can also use the eight predefined symbols ‘erN’
(‘er0’ ... ‘er7’) to refer to the 32-bit general purpose registers.

The two control registers are called ‘pc’ (program counter; a 16-bit
register, except on the H8/300H where it is 24 bits) and ‘ccr’
(condition code register; an 8-bit register). ‘r7’ is used as the
stack pointer, and can also be called ‘sp’.

1.142 H8/300-Addressing

Addressing Modes
................

as understands the following addressing modes for the H8/300:
‘rN’

Register direct

‘@rN’
Register indirect

‘@(D, rN)’
‘@(D:16, rN)’
‘@(D:24, rN)’

Register indirect: 16-bit or 24-bit displacement D from register
N. (24-bit displacements are only meaningful on the H8/300H.)

‘@rN+’
Register indirect with post-increment

as 66 / 126

‘@-rN’
Register indirect with pre-decrement

‘‘@’AA’
‘‘@’AA:8’
‘‘@’AA:16’
‘‘@’AA:24’

Absolute address ‘aa’. (The address size ‘:24’ only makes sense
on the H8/300H.)

‘#XX’
‘#XX:8’
‘#XX:16’
‘#XX:32’

Immediate data XX. You may specify the ‘:8’, ‘:16’, or ‘:32’ for
clarity, if you wish; but ‘as’ neither requires this nor uses
it--the data size required is taken from context.

‘‘@’‘@’AA’
‘‘@’‘@’AA:8’

Memory indirect. You may specify the ‘:8’ for clarity, if you
wish; but ‘as’ neither requires this nor uses it.

1.143 H8/300 Floating Point

Floating Point

The H8/300 family has no hardware floating point, but the ‘.float’
directive generates IEEE floating-point numbers for compatibility with
other development tools.

1.144 H8/300 Directives

H8/300 Machine Directives

‘as’ has only one machine-dependent directive for the H8/300:

‘.h300h’
Recognize and emit additional instructions for the H8/300H
variant, and also make ‘.int’ emit 32-bit numbers rather than the
usual (16-bit) for the H8/300 family.

On the H8/300 family (including the H8/300H) ‘.word’ directives
generate 16-bit numbers.

1.145 H8/300 Opcodes

as 67 / 126

Opcodes

For detailed information on the H8/300 machine instruction set, see
‘H8/300 Series Programming Manual’ (Hitachi ADE-602-025). For
information specific to the H8/300H, see ‘H8/300H Series Programming
Manual’ (Hitachi).

‘as’ implements all the standard H8/300 opcodes. No additional
pseudo-instructions are needed on this family.

The following table summarizes the H8/300 opcodes, and their
arguments. Entries marked ‘*’ are opcodes used only on the H8/300H.

Legend:
Rs source register
Rd destination register
abs absolute address
imm immediate data

disp:N N-bit displacement from a register
pcrel:N N-bit displacement relative to program counter

add.b #imm,rd * andc #imm,ccr
add.b rs,rd band #imm,rd
add.w rs,rd band #imm,@rd

* add.w #imm,rd band #imm,@abs:8

* add.l rs,rd bra pcrel:8

* add.l #imm,rd * bra pcrel:16
adds #imm,rd bt pcrel:8
addx #imm,rd * bt pcrel:16
addx rs,rd brn pcrel:8
and.b #imm,rd * brn pcrel:16
and.b rs,rd bf pcrel:8

* and.w rs,rd * bf pcrel:16

* and.w #imm,rd bhi pcrel:8

* and.l #imm,rd * bhi pcrel:16

* and.l rs,rd bls pcrel:8

* bls pcrel:16 bld #imm,rd
bcc pcrel:8 bld #imm,@rd

* bcc pcrel:16 bld #imm,@abs:8
bhs pcrel:8 bnot #imm,rd

* bhs pcrel:16 bnot #imm,@rd
bcs pcrel:8 bnot #imm,@abs:8

* bcs pcrel:16 bnot rs,rd
blo pcrel:8 bnot rs,@rd

* blo pcrel:16 bnot rs,@abs:8
bne pcrel:8 bor #imm,rd

* bne pcrel:16 bor #imm,@rd
beq pcrel:8 bor #imm,@abs:8

* beq pcrel:16 bset #imm,rd
bvc pcrel:8 bset #imm,@rd

* bvc pcrel:16 bset #imm,@abs:8
bvs pcrel:8 bset rs,rd

* bvs pcrel:16 bset rs,@rd
bpl pcrel:8 bset rs,@abs:8

as 68 / 126

* bpl pcrel:16 bsr pcrel:8
bmi pcrel:8 bsr pcrel:16

* bmi pcrel:16 bst #imm,rd
bge pcrel:8 bst #imm,@rd

* bge pcrel:16 bst #imm,@abs:8
blt pcrel:8 btst #imm,rd

* blt pcrel:16 btst #imm,@rd
bgt pcrel:8 btst #imm,@abs:8

* bgt pcrel:16 btst rs,rd
ble pcrel:8 btst rs,@rd

* ble pcrel:16 btst rs,@abs:8
bclr #imm,rd bxor #imm,rd
bclr #imm,@rd bxor #imm,@rd
bclr #imm,@abs:8 bxor #imm,@abs:8
bclr rs,rd cmp.b #imm,rd
bclr rs,@rd cmp.b rs,rd
bclr rs,@abs:8 cmp.w rs,rd
biand #imm,rd cmp.w rs,rd
biand #imm,@rd * cmp.w #imm,rd
biand #imm,@abs:8 * cmp.l #imm,rd
bild #imm,rd * cmp.l rs,rd
bild #imm,@rd daa rs
bild #imm,@abs:8 das rs
bior #imm,rd dec.b rs
bior #imm,@rd * dec.w #imm,rd
bior #imm,@abs:8 * dec.l #imm,rd
bist #imm,rd divxu.b rs,rd
bist #imm,@rd * divxu.w rs,rd
bist #imm,@abs:8 * divxs.b rs,rd
bixor #imm,rd * divxs.w rs,rd
bixor #imm,@rd eepmov
bixor #imm,@abs:8 * eepmovw

* exts.w rd mov.w rs,@abs:16

* exts.l rd * mov.l #imm,rd

* extu.w rd * mov.l rs,rd

* extu.l rd * mov.l @rs,rd
inc rs * mov.l @(disp:16,rs),rd

* inc.w #imm,rd * mov.l @(disp:24,rs),rd

* inc.l #imm,rd * mov.l @rs+,rd
jmp @rs * mov.l @abs:16,rd
jmp abs * mov.l @abs:24,rd
jmp @@abs:8 * mov.l rs,@rd
jsr @rs * mov.l rs,@(disp:16,rd)
jsr abs * mov.l rs,@(disp:24,rd)
jsr @@abs:8 * mov.l rs,@-rd
ldc #imm,ccr * mov.l rs,@abs:16
ldc rs,ccr * mov.l rs,@abs:24

* ldc @abs:16,ccr movfpe @abs:16,rd

* ldc @abs:24,ccr movtpe rs,@abs:16

* ldc @(disp:16,rs),ccr mulxu.b rs,rd

* ldc @(disp:24,rs),ccr * mulxu.w rs,rd

* ldc @rs+,ccr * mulxs.b rs,rd

* ldc @rs,ccr * mulxs.w rs,rd

* mov.b @(disp:24,rs),rd neg.b rs

* mov.b rs,@(disp:24,rd) * neg.w rs
mov.b @abs:16,rd * neg.l rs

as 69 / 126

mov.b rs,rd nop
mov.b @abs:8,rd not.b rs
mov.b rs,@abs:8 * not.w rs
mov.b rs,rd * not.l rs
mov.b #imm,rd or.b #imm,rd
mov.b @rs,rd or.b rs,rd
mov.b @(disp:16,rs),rd * or.w #imm,rd
mov.b @rs+,rd * or.w rs,rd
mov.b @abs:8,rd * or.l #imm,rd
mov.b rs,@rd * or.l rs,rd
mov.b rs,@(disp:16,rd) orc #imm,ccr
mov.b rs,@-rd pop.w rs
mov.b rs,@abs:8 * pop.l rs
mov.w rs,@rd push.w rs

* mov.w @(disp:24,rs),rd * push.l rs

* mov.w rs,@(disp:24,rd) rotl.b rs

* mov.w @abs:24,rd * rotl.w rs

* mov.w rs,@abs:24 * rotl.l rs
mov.w rs,rd rotr.b rs
mov.w #imm,rd * rotr.w rs
mov.w @rs,rd * rotr.l rs
mov.w @(disp:16,rs),rd rotxl.b rs
mov.w @rs+,rd * rotxl.w rs
mov.w @abs:16,rd * rotxl.l rs
mov.w rs,@(disp:16,rd) rotxr.b rs
mov.w rs,@-rd * rotxr.w rs

* rotxr.l rs * stc ccr,@(disp:24,rd)
bpt * stc ccr,@-rd
rte * stc ccr,@abs:16
rts * stc ccr,@abs:24
shal.b rs sub.b rs,rd

* shal.w rs sub.w rs,rd

* shal.l rs * sub.w #imm,rd
shar.b rs * sub.l rs,rd

* shar.w rs * sub.l #imm,rd

* shar.l rs subs #imm,rd
shll.b rs subx #imm,rd

* shll.w rs subx rs,rd

* shll.l rs * trapa #imm
shlr.b rs xor #imm,rd

* shlr.w rs xor rs,rd

* shlr.l rs * xor.w #imm,rd
sleep * xor.w rs,rd
stc ccr,rd * xor.l #imm,rd

* stc ccr,@rs * xor.l rs,rd

* stc ccr,@(disp:16,rd) xorc #imm,ccr

Four H8/300 instructions (‘add’, ‘cmp’, ‘mov’, ‘sub’) are defined
with variants using the suffixes ‘.b’, ‘.w’, and ‘.l’ to specify the
size of a memory operand. ‘as’ supports these suffixes, but does not
require them; since one of the operands is always a register, ‘as’ can
deduce the correct size.

For example, since ‘r0’ refers to a 16-bit register,
mov r0,@foo

is equivalent to

as 70 / 126

mov.w r0,@foo

If you use the size suffixes, ‘as’ issues a warning when the suffix
and the register size do not match.

1.146 H8/500-Dependent

H8/500 Dependent Features
=========================

* Menu:

* H8/500 Options Options

* H8/500 Syntax Syntax

* H8/500 Floating Point Floating Point

* H8/500 Directives H8/500 Machine Directives

* H8/500 Opcodes Opcodes

1.147 H8/500 Options

Options

‘as’ has no additional command-line options for the Hitachi H8/500
family.

1.148 H8/500 Syntax

Syntax

* Menu:

* H8/500-Chars Special Characters

* H8/500-Regs Register Names

* H8/500-Addressing Addressing Modes

1.149 H8/500-Chars

Special Characters
..................

‘!’ is the line comment character.

‘;’ can be used instead of a newline to separate statements.

Since ‘$’ has no special meaning, you may use it in symbol names.

as 71 / 126

1.150 H8/500-Regs

Register Names
..............

You can use the predefined symbols ‘r0’, ‘r1’, ‘r2’, ‘r3’, ‘r4’,
‘r5’, ‘r6’, and ‘r7’ to refer to the H8/500 registers.

The H8/500 also has these control registers:

‘cp’
code pointer

‘dp’
data pointer

‘bp’
base pointer

‘tp’
stack top pointer

‘ep’
extra pointer

‘sr’
status register

‘ccr’
condition code register

All registers are 16 bits long. To represent 32 bit numbers, use two
adjacent registers; for distant memory addresses, use one of the segment
pointers (‘cp’ for the program counter; ‘dp’ for ‘r0’-‘r3’; ‘ep’ for
‘r4’ and ‘r5’; and ‘tp’ for ‘r6’ and ‘r7’.

1.151 H8/500-Addressing

Addressing Modes
................

as understands the following addressing modes for the H8/500:
‘RN’

Register direct

‘@RN’
Register indirect

‘@(d:8, RN)’
Register indirect with 8 bit signed displacement

‘@(d:16, RN)’
Register indirect with 16 bit signed displacement

as 72 / 126

‘@-RN’
Register indirect with pre-decrement

‘@RN+’
Register indirect with post-increment

‘@AA:8’
8 bit absolute address

‘@AA:16’
16 bit absolute address

‘#XX:8’
8 bit immediate

‘#XX:16’
16 bit immediate

1.152 H8/500 Floating Point

Floating Point

The H8/500 family uses IEEE floating-point numbers.

1.153 H8/500 Directives

H8/500 Machine Directives

‘as’ has no machine-dependent directives for the H8/500. However,
on this platform the ‘.int’ and ‘.word’ directives generate 16-bit
numbers.

1.154 H8/500 Opcodes

Opcodes

For detailed information on the H8/500 machine instruction set, see
‘H8/500 Series Programming Manual’ (Hitachi M21T001).

‘as’ implements all the standard H8/500 opcodes. No additional
pseudo-instructions are needed on this family.

The following table summarizes H8/500 opcodes and their operands:

Legend:
abs8 8-bit absolute address
abs16 16-bit absolute address

as 73 / 126

abs24 24-bit absolute address
crb ‘ccr’, ‘br’, ‘ep’, ‘dp’, ‘tp’, ‘dp’
disp8 8-bit displacement
ea ‘rn’, ‘@rn’, ‘@(d:8, rn)’, ‘@(d:16, rn)’,

‘@-rn’, ‘@rn+’, ‘@aa:8’, ‘@aa:16’,
‘#xx:8’, ‘#xx:16’

ea_mem ‘@rn’, ‘@(d:8, rn)’, ‘@(d:16, rn)’,
‘@-rn’, ‘@rn+’, ‘@aa:8’, ‘@aa:16’

ea_noimm ‘rn’, ‘@rn’, ‘@(d:8, rn)’, ‘@(d:16, rn)’,
‘@-rn’, ‘@rn+’, ‘@aa:8’, ‘@aa:16’

fp r6
imm4 4-bit immediate data
imm8 8-bit immediate data
imm16 16-bit immediate data
pcrel8 8-bit offset from program counter
pcrel16 16-bit offset from program counter
qim ‘-2’, ‘-1’, ‘1’, ‘2’
rd any register
rs a register distinct from rd
rlist comma-separated list of registers in parentheses;

register ranges ‘rd-rs’ are allowed
sp stack pointer (‘r7’)
sr status register
sz size; ‘.b’ or ‘.w’. If omitted, default ‘.w’

ldc[.b] ea,crb bcc[.w] pcrel16
ldc[.w] ea,sr bcc[.b] pcrel8
add[:q] sz qim,ea_noimm bhs[.w] pcrel16
add[:g] sz ea,rd bhs[.b] pcrel8
adds sz ea,rd bcs[.w] pcrel16
addx sz ea,rd bcs[.b] pcrel8
and sz ea,rd blo[.w] pcrel16
andc[.b] imm8,crb blo[.b] pcrel8
andc[.w] imm16,sr bne[.w] pcrel16
bpt bne[.b] pcrel8
bra[.w] pcrel16 beq[.w] pcrel16
bra[.b] pcrel8 beq[.b] pcrel8
bt[.w] pcrel16 bvc[.w] pcrel16
bt[.b] pcrel8 bvc[.b] pcrel8
brn[.w] pcrel16 bvs[.w] pcrel16
brn[.b] pcrel8 bvs[.b] pcrel8
bf[.w] pcrel16 bpl[.w] pcrel16
bf[.b] pcrel8 bpl[.b] pcrel8
bhi[.w] pcrel16 bmi[.w] pcrel16
bhi[.b] pcrel8 bmi[.b] pcrel8
bls[.w] pcrel16 bge[.w] pcrel16
bls[.b] pcrel8 bge[.b] pcrel8

blt[.w] pcrel16 mov[:g][.b] imm8,ea_mem
blt[.b] pcrel8 mov[:g][.w] imm16,ea_mem
bgt[.w] pcrel16 movfpe[.b] ea,rd
bgt[.b] pcrel8 movtpe[.b] rs,ea_noimm
ble[.w] pcrel16 mulxu sz ea,rd
ble[.b] pcrel8 neg sz ea
bclr sz imm4,ea_noimm nop
bclr sz rs,ea_noimm not sz ea
bnot sz imm4,ea_noimm or sz ea,rd

as 74 / 126

bnot sz rs,ea_noimm orc[.b] imm8,crb
bset sz imm4,ea_noimm orc[.w] imm16,sr
bset sz rs,ea_noimm pjmp abs24
bsr[.b] pcrel8 pjmp @rd
bsr[.w] pcrel16 pjsr abs24
btst sz imm4,ea_noimm pjsr @rd
btst sz rs,ea_noimm prtd imm8
clr sz ea prtd imm16
cmp[:e][.b] imm8,rd prts
cmp[:i][.w] imm16,rd rotl sz ea
cmp[:g].b imm8,ea_noimm rotr sz ea
cmp[:g][.w] imm16,ea_noimm rotxl sz ea
Cmp[:g] sz ea,rd rotxr sz ea
dadd rs,rd rtd imm8
divxu sz ea,rd rtd imm16
dsub rs,rd rts
exts[.b] rd scb/f rs,pcrel8
extu[.b] rd scb/ne rs,pcrel8
jmp @rd scb/eq rs,pcrel8
jmp @(imm8,rd) shal sz ea
jmp @(imm16,rd) shar sz ea
jmp abs16 shll sz ea
jsr @rd shlr sz ea
jsr @(imm8,rd) sleep
jsr @(imm16,rd) stc[.b] crb,ea_noimm
jsr abs16 stc[.w] sr,ea_noimm
ldm @sp+,(rlist) stm (rlist),@-sp
link fp,imm8 sub sz ea,rd
link fp,imm16 subs sz ea,rd
mov[:e][.b] imm8,rd subx sz ea,rd
mov[:i][.w] imm16,rd swap[.b] rd
mov[:l][.w] abs8,rd tas[.b] ea
mov[:l].b abs8,rd trapa imm4
mov[:s][.w] rs,abs8 trap/vs
mov[:s].b rs,abs8 tst sz ea
mov[:f][.w] @(disp8,fp),rd unlk fp
mov[:f][.w] rs,@(disp8,fp) xch[.w] rs,rd
mov[:f].b @(disp8,fp),rd xor sz ea,rd
mov[:f].b rs,@(disp8,fp) xorc.b imm8,crb
mov[:g] sz rs,ea_mem xorc.w imm16,sr
mov[:g] sz ea,rd

1.155 HPPA-Dependent

HPPA Dependent Features
=======================

* Menu:

*
HPPA Notes

Notes

*
HPPA Options

Options

as 75 / 126

*
HPPA Syntax

Syntax

*
HPPA Floating Point

Floating Point

*
HPPA Directives

HPPA Machine Directives

*
HPPA Opcodes

Opcodes

1.156 HPPA Notes

Notes

As a back end for GNU CC ‘as’ has been throughly tested and should
work extremely well. We have tested it only minimally on hand written
assembly code and no one has tested it much on the assembly output from
the HP compilers.

The format of the debugging sections has changed since the original
‘as’ port (version 1.3X) was released; therefore, you must rebuild all
HPPA objects and libraries with the new assembler so that you can debug
the final executable.

The HPPA ‘as’ port generates a small subset of the relocations
available in the SOM and ELF object file formats. Additional relocation
support will be added as it becomes necessary.

1.157 HPPA Options

Options

‘as’ has no machine-dependent command-line options for the HPPA.

1.158 HPPA Syntax

Syntax

The assembler syntax closely follows the HPPA instruction set
reference manual; assembler directives and general syntax closely
follow the HPPA assembly language reference manual, with a few
noteworthy differences.

as 76 / 126

First, a colon may immediately follow a label definition. This is
simply for compatibility with how most assembly language programmers
write code.

Some obscure expression parsing problems may affect hand written
code which uses the ‘spop’ instructions, or code which makes significant
use of the ‘!’ line separator.

‘as’ is much less forgiving about missing arguments and other
similar oversights than the HP assembler. ‘as’ notifies you of missing
arguments as syntax errors; this is regarded as a feature, not a bug.

Finally, ‘as’ allows you to use an external symbol without
explicitly importing the symbol. *Warning:* in the future this will be
an error for HPPA targets.

Special characters for HPPA targets include:

‘;’ is the line comment character.

‘!’ can be used instead of a newline to separate statements.

Since ‘$’ has no special meaning, you may use it in symbol names.

1.159 HPPA Floating Point

Floating Point

The HPPA family uses IEEE floating-point numbers.

1.160 HPPA Directives

HPPA Assembler Directives

‘as’ for the HPPA supports many additional directives for
compatibility with the native assembler. This section describes them
only briefly. For detailed information on HPPA-specific assembler
directives, see ‘HP9000 Series 800 Assembly Language Reference Manual’
(HP 92432-90001).

‘as’ does *not* support the following assembler directives described
in the HP manual:

.endm .liston

.enter .locct

.leave .macro

.listoff

Beyond those implemented for compatibility, ‘as’ supports one
additional assembler directive for the HPPA: ‘.param’. It conveys

as 77 / 126

register argument locations for static functions. Its syntax closely
follows the ‘.export’ directive.

These are the additional directives in ‘as’ for the HPPA:

‘.block N’
‘.blockz N’

Reserve N bytes of storage, and initialize them to zero.

‘.call’
Mark the beginning of a procedure call. Only the special case
with *no arguments* is allowed.

‘.callinfo [PARAM=VALUE, ...] [FLAG, ...]’
Specify a number of parameters and flags that define the
environment for a procedure.

PARAM may be any of ‘frame’ (frame size), ‘entry_gr’ (end of
general register range), ‘entry_fr’ (end of float register range),
‘entry_sr’ (end of space register range).

The values for FLAG are ‘calls’ or ‘caller’ (proc has
subroutines), ‘no_calls’ (proc does not call subroutines),
‘save_rp’ (preserve return pointer), ‘save_sp’ (proc preserves
stack pointer), ‘no_unwind’ (do not unwind this proc), ‘hpux_int’
(proc is interrupt routine).

‘.code’
Assemble into the standard section called ‘$TEXT$’, subsection
‘$CODE$’.

‘.copyright "STRING"’
In the SOM object format, insert STRING into the object code,
marked as a copyright string.

‘.copyright "STRING"’
In the ELF object format, insert STRING into the object code,
marked as a version string.

‘.enter’
Not yet supported; the assembler rejects programs containing this
directive.

‘.entry’
Mark the beginning of a procedure.

‘.exit’
Mark the end of a procedure.

‘.export NAME [,TYP] [,PARAM=R]’
Make a procedure NAME available to callers. TYP, if present, must
be one of ‘absolute’, ‘code’ (ELF only, not SOM), ‘data’, ‘entry’,
‘data’, ‘entry’, ‘millicode’, ‘plabel’, ‘pri_prog’, or ‘sec_prog’.

PARAM, if present, provides either relocation information for the
procedure arguments and result, or a privilege level. PARAM may be
‘argwN’ (where N ranges from ‘0’ to ‘3’, and indicates one of four

as 78 / 126

one-word arguments); ‘rtnval’ (the procedure’s result); or
‘priv_lev’ (privilege level). For arguments or the result, R
specifies how to relocate, and must be one of ‘no’ (not
relocatable), ‘gr’ (argument is in general register), ‘fr’ (in
floating point register), or ‘fu’ (upper half of float register).
For ‘priv_lev’, R is an integer.

‘.half N’
Define a two-byte integer constant N; synonym for the portable
‘as’ directive ‘.short’.

‘.import NAME [,TYP]’
Converse of ‘.export’; make a procedure available to call. The
arguments use the same conventions as the first two arguments for
‘.export’.

‘.label NAME’
Define NAME as a label for the current assembly location.

‘.leave’
Not yet supported; the assembler rejects programs containing this
directive.

‘.origin LC’
Advance location counter to LC. Synonym for the ‘{No Value For
"as"}’ portable directive ‘.org’.

‘.param NAME [,TYP] [,PARAM=R]’
Similar to ‘.export’, but used for static procedures.

‘.proc’
Use preceding the first statement of a procedure.

‘.procend’
Use following the last statement of a procedure.

‘LABEL .reg EXPR’
Synonym for ‘.equ’; define LABEL with the absolute expression EXPR
as its value.

‘.space SECNAME [,PARAMS]’
Switch to section SECNAME, creating a new section by that name if
necessary. You may only use PARAMS when creating a new section,
not when switching to an existing one. SECNAME may identify a
section by number rather than by name.

If specified, the list PARAMS declares attributes of the section,
identified by keywords. The keywords recognized are ‘spnum=EXP’
(identify this section by the number EXP, an absolute expression),
‘sort=EXP’ (order sections according to this sort key when linking;
EXP is an absolute expression), ‘unloadable’ (section contains no
loadable data), ‘notdefined’ (this section defined elsewhere), and
‘private’ (data in this section not available to other programs).

‘.spnum SECNAM’
Allocate four bytes of storage, and initialize them with the
section number of the section named SECNAM. (You can define the

as 79 / 126

section number with the HPPA ‘.space’ directive.)

‘.string "STR"’
Copy the characters in the string STR to the object file. *Note
Strings: Strings, for information on escape sequences you can use
in ‘as’ strings.

Warning! The HPPA version of ‘.string’ differs from the usual
‘as’ definition: it does *not* write a zero byte after copying STR.

‘.stringz "STR"’
Like ‘.string’, but appends a zero byte after copying STR to object
file.

‘.subspa NAME [,PARAMS]’
Similar to ‘.space’, but selects a subsection NAME within the
current section. You may only specify PARAMS when you create a
subsection (in the first instance of ‘.subspa’ for this NAME).

If specified, the list PARAMS declares attributes of the
subsection, identified by keywords. The keywords recognized are
‘quad=EXPR’ ("quadrant" for this subsection), ‘align=EXPR’
(alignment for beginning of this subsection; a power of two),
‘access=EXPR’ (value for "access rights" field), ‘sort=EXPR’
(sorting order for this subspace in link), ‘code_only’ (subsection
contains only code), ‘unloadable’ (subsection cannot be loaded
into memory), ‘common’ (subsection is common block), ‘dup_comm’
(initialized data may have duplicate names), or ‘zero’ (subsection
is all zeros, do not write in object file).

‘.version "STR"’
Write STR as version identifier in object code.

1.161 HPPA Opcodes

Opcodes

For detailed information on the HPPA machine instruction set, see
‘PA-RISC Architecture and Instruction Set Reference Manual’ (HP
09740-90039).

1.162 SH-Dependent

Hitachi SH Dependent Features
=============================

* Menu:

*
SH Options

Options

as 80 / 126

*
SH Syntax

Syntax

*
SH Floating Point

Floating Point

*
SH Directives

SH Machine Directives

*
SH Opcodes

Opcodes

1.163 SH Options

Options

‘as’ has no additional command-line options for the Hitachi SH
family.

1.164 SH Syntax

Syntax

* Menu:

*
SH-Chars

Special Characters

*
SH-Regs

Register Names

*
SH-Addressing

Addressing Modes

1.165 SH-Chars

Special Characters
..................

‘!’ is the line comment character.

You can use ‘;’ instead of a newline to separate statements.

Since ‘$’ has no special meaning, you may use it in symbol names.

as 81 / 126

1.166 SH-Regs

Register Names
..............

You can use the predefined symbols ‘r0’, ‘r1’, ‘r2’, ‘r3’, ‘r4’,
‘r5’, ‘r6’, ‘r7’, ‘r8’, ‘r9’, ‘r10’, ‘r11’, ‘r12’, ‘r13’, ‘r14’, and
‘r15’ to refer to the SH registers.

The SH also has these control registers:

‘pr’
procedure register (holds return address)

‘pc’
program counter

‘mach’
‘macl’

high and low multiply accumulator registers

‘sr’
status register

‘gbr’
global base register

‘vbr’
vector base register (for interrupt vectors)

1.167 SH-Addressing

Addressing Modes
................

‘as’ understands the following addressing modes for the SH. ‘RN’ in
the following refers to any of the numbered registers, but *not* the
control registers.

‘RN’
Register direct

‘@RN’
Register indirect

‘@-RN’
Register indirect with pre-decrement

‘@RN+’
Register indirect with post-increment

‘@(DISP, RN)’
Register indirect with displacement

as 82 / 126

‘@(R0, RN)’
Register indexed

‘@(DISP, GBR)’
‘GBR’ offset

‘@(R0, GBR)’
GBR indexed

‘ADDR’
‘@(DISP, PC)’

PC relative address (for branch or for addressing memory). The
‘as’ implementation allows you to use the simpler form ADDR
anywhere a PC relative address is called for; the alternate form
is supported for compatibility with other assemblers.

‘#IMM’
Immediate data

1.168 SH Floating Point

Floating Point

The SH family uses IEEE floating-point numbers.

1.169 SH Directives

SH Machine Directives

‘as’ has no machine-dependent directives for the SH.

1.170 SH Opcodes

Opcodes

For detailed information on the SH machine instruction set, see
‘SH-Microcomputer User’s Manual’ (Hitachi Micro Systems, Inc.).

‘as’ implements all the standard SH opcodes. No additional
pseudo-instructions are needed on this family. Note, however, that
because ‘as’ supports a simpler form of PC-relative addressing, you may
simply write (for example)

mov.l bar,r0

where other assemblers might require an explicit displacement to ‘bar’
from the program counter:

as 83 / 126

mov.l @(DISP, PC)

Here is a summary of SH opcodes:

Legend:
Rn a numbered register
Rm another numbered register
#imm immediate data
disp displacement
disp8 8-bit displacement
disp12 12-bit displacement

add #imm,Rn lds.l @Rn+,PR
add Rm,Rn mac.w @Rm+,@Rn+
addc Rm,Rn mov #imm,Rn
addv Rm,Rn mov Rm,Rn
and #imm,R0 mov.b Rm,@(R0,Rn)
and Rm,Rn mov.b Rm,@-Rn
and.b #imm,@(R0,GBR) mov.b Rm,@Rn
bf disp8 mov.b @(disp,Rm),R0
bra disp12 mov.b @(disp,GBR),R0
bsr disp12 mov.b @(R0,Rm),Rn
bt disp8 mov.b @Rm+,Rn
clrmac mov.b @Rm,Rn
clrt mov.b R0,@(disp,Rm)
cmp/eq #imm,R0 mov.b R0,@(disp,GBR)
cmp/eq Rm,Rn mov.l Rm,@(disp,Rn)
cmp/ge Rm,Rn mov.l Rm,@(R0,Rn)
cmp/gt Rm,Rn mov.l Rm,@-Rn
cmp/hi Rm,Rn mov.l Rm,@Rn
cmp/hs Rm,Rn mov.l @(disp,Rn),Rm
cmp/pl Rn mov.l @(disp,GBR),R0
cmp/pz Rn mov.l @(disp,PC),Rn
cmp/str Rm,Rn mov.l @(R0,Rm),Rn
div0s Rm,Rn mov.l @Rm+,Rn
div0u mov.l @Rm,Rn
div1 Rm,Rn mov.l R0,@(disp,GBR)
exts.b Rm,Rn mov.w Rm,@(R0,Rn)
exts.w Rm,Rn mov.w Rm,@-Rn
extu.b Rm,Rn mov.w Rm,@Rn
extu.w Rm,Rn mov.w @(disp,Rm),R0
jmp @Rn mov.w @(disp,GBR),R0
jsr @Rn mov.w @(disp,PC),Rn
ldc Rn,GBR mov.w @(R0,Rm),Rn
ldc Rn,SR mov.w @Rm+,Rn
ldc Rn,VBR mov.w @Rm,Rn
ldc.l @Rn+,GBR mov.w R0,@(disp,Rm)
ldc.l @Rn+,SR mov.w R0,@(disp,GBR)
ldc.l @Rn+,VBR mova @(disp,PC),R0
lds Rn,MACH movt Rn
lds Rn,MACL muls Rm,Rn
lds Rn,PR mulu Rm,Rn
lds.l @Rn+,MACH neg Rm,Rn
lds.l @Rn+,MACL negc Rm,Rn

nop stc VBR,Rn

as 84 / 126

not Rm,Rn stc.l GBR,@-Rn
or #imm,R0 stc.l SR,@-Rn
or Rm,Rn stc.l VBR,@-Rn
or.b #imm,@(R0,GBR) sts MACH,Rn
rotcl Rn sts MACL,Rn
rotcr Rn sts PR,Rn
rotl Rn sts.l MACH,@-Rn
rotr Rn sts.l MACL,@-Rn
rte sts.l PR,@-Rn
rts sub Rm,Rn
sett subc Rm,Rn
shal Rn subv Rm,Rn
shar Rn swap.b Rm,Rn
shll Rn swap.w Rm,Rn
shll16 Rn tas.b @Rn
shll2 Rn trapa #imm
shll8 Rn tst #imm,R0
shlr Rn tst Rm,Rn
shlr16 Rn tst.b #imm,@(R0,GBR)
shlr2 Rn xor #imm,R0
shlr8 Rn xor Rm,Rn
sleep xor.b #imm,@(R0,GBR)
stc GBR,Rn xtrct Rm,Rn
stc SR,Rn

1.171 i960-Dependent

Intel 80960 Dependent Features
==============================

* Menu:

*
Options-i960

i960 Command-line Options

*
Floating Point-i960

Floating Point

*
Directives-i960

i960 Machine Directives

*
Opcodes for i960

i960 Opcodes

1.172 Options-i960

i960 Command-line Options

‘-ACA | -ACA_A | -ACB | -ACC | -AKA | -AKB | -AKC | -AMC’

as 85 / 126

Select the 80960 architecture. Instructions or features not
supported by the selected architecture cause fatal errors.

‘-ACA’ is equivalent to ‘-ACA_A’; ‘-AKC’ is equivalent to ‘-AMC’.
Synonyms are provided for compatibility with other tools.

If you do not specify any of these options, ‘as’ generates code
for any instruction or feature that is supported by *some* version
of the 960 (even if this means mixing architectures!). In
principle, ‘as’ attempts to deduce the minimal sufficient
processor type if none is specified; depending on the object code
format, the processor type may be recorded in the object file. If
it is critical that the ‘as’ output match a specific architecture,
specify that architecture explicitly.

‘-b’
Add code to collect information about conditional branches taken,
for later optimization using branch prediction bits. (The
conditional branch instructions have branch prediction bits in the
CA, CB, and CC architectures.) If BR represents a conditional
branch instruction, the following represents the code generated by
the assembler when ‘-b’ is specified:

call INCREMENT ROUTINE
.word 0 # pre-counter

Label: BR
call INCREMENT ROUTINE
.word 0 # post-counter

The counter following a branch records the number of times that
branch was *not* taken; the differenc between the two counters is
the number of times the branch *was* taken.

A table of every such ‘Label’ is also generated, so that the
external postprocessor ‘gbr960’ (supplied by Intel) can locate all
the counters. This table is always labelled ‘__BRANCH_TABLE__’;
this is a local symbol to permit collecting statistics for many
separate object files. The table is word aligned, and begins with
a two-word header. The first word, initialized to 0, is used in
maintaining linked lists of branch tables. The second word is a
count of the number of entries in the table, which follow
immediately: each is a word, pointing to one of the labels
illustrated above.

+------------+------------+------------+ ... +------------+
*NEXT	COUNT: N	*BRLAB 1		*BRLAB N
+------------+------------+------------+ ... +------------+

__BRANCH_TABLE__ layout

The first word of the header is used to locate multiple branch
tables, since each object file may contain one. Normally the links
are maintained with a call to an initialization routine, placed at
the beginning of each function in the file. The GNU C compiler
generates these calls automatically when you give it a ‘-b’ option.

as 86 / 126

For further details, see the documentation of ‘gbr960’.

‘-norelax’
Normally, Compare-and-Branch instructions with targets that require
displacements greater than 13 bits (or that have external targets)
are replaced with the corresponding compare (or ‘chkbit’) and
branch instructions. You can use the ‘-norelax’ option to specify
that ‘as’ should generate errors instead, if the target
displacement is larger than 13 bits.

This option does not affect the Compare-and-Jump instructions; the
code emitted for them is *always* adjusted when necessary
(depending on displacement size), regardless of whether you use
‘-norelax’.

1.173 Floating Point-i960

Floating Point

‘as’ generates IEEE floating-point numbers for the directives
‘.float’, ‘.double’, ‘.extended’, and ‘.single’.

1.174 Directives-i960

i960 Machine Directives

‘.bss SYMBOL, LENGTH, ALIGN’
Reserve LENGTH bytes in the bss section for a local SYMBOL,
aligned to the power of two specified by ALIGN. LENGTH and ALIGN
must be positive absolute expressions. This directive differs
from ‘.lcomm’ only in that it permits you to specify an alignment.

*Note ‘.lcomm’: Lcomm.

‘.extended FLONUMS’
‘.extended’ expects zero or more flonums, separated by commas; for
each flonum, ‘.extended’ emits an IEEE extended-format (80-bit)
floating-point number.

‘.leafproc CALL-LAB, BAL-LAB’
You can use the ‘.leafproc’ directive in conjunction with the
optimized ‘callj’ instruction to enable faster calls of leaf
procedures. If a procedure is known to call no other procedures,
you may define an entry point that skips procedure prolog code
(and that does not depend on system-supplied saved context), and
declare it as the BAL-LAB using ‘.leafproc’. If the procedure
also has an entry point that goes through the normal prolog, you
can specify that entry point as CALL-LAB.

A ‘.leafproc’ declaration is meant for use in conjunction with the
optimized call instruction ‘callj’; the directive records the data

as 87 / 126

needed later to choose between converting the ‘callj’ into a ‘bal’
or a ‘call’.

CALL-LAB is optional; if only one argument is present, or if the
two arguments are identical, the single argument is assumed to be
the ‘bal’ entry point.

‘.sysproc NAME, INDEX’
The ‘.sysproc’ directive defines a name for a system procedure.
After you define it using ‘.sysproc’, you can use NAME to refer to
the system procedure identified by INDEX when calling procedures
with the optimized call instruction ‘callj’.

Both arguments are required; INDEX must be between 0 and 31
(inclusive).

1.175 Opcodes for i960

i960 Opcodes

All Intel 960 machine instructions are supported; *note i960
Command-line Options: Options-i960. for a discussion of selecting the
instruction subset for a particular 960 architecture.

Some opcodes are processed beyond simply emitting a single
corresponding instruction: ‘callj’, and Compare-and-Branch or
Compare-and-Jump instructions with target displacements larger than 13
bits.

* Menu:

*
callj-i960

‘callj’

*
Compare-and-branch-i960

Compare-and-Branch

1.176 callj-i960

‘callj’
.......

You can write ‘callj’ to have the assembler or the linker determine
the most appropriate form of subroutine call: ‘call’, ‘bal’, or
‘calls’. If the assembly source contains enough information--a
‘.leafproc’ or ‘.sysproc’ directive defining the operand--then ‘as’
translates the ‘callj’; if not, it simply emits the ‘callj’, leaving it
for the linker to resolve.

as 88 / 126

1.177 Compare-and-branch-i960

Compare-and-Branch
..................

The 960 architectures provide combined Compare-and-Branch
instructions that permit you to store the branch target in the lower 13
bits of the instruction word itself. However, if you specify a branch
target far enough away that its address won’t fit in 13 bits, the
assembler can either issue an error, or convert your Compare-and-Branch
instruction into separate instructions to do the compare and the branch.

Whether ‘as’ gives an error or expands the instruction depends on
two choices you can make: whether you use the ‘-norelax’ option, and
whether you use a "Compare and Branch" instruction or a "Compare and
Jump" instruction. The "Jump" instructions are *always* expanded if
necessary; the "Branch" instructions are expanded when necessary

unless you specify ‘-norelax’--in which case ‘as’ gives an error
instead.

These are the Compare-and-Branch instructions, their "Jump" variants,
and the instruction pairs they may expand into:

Compare and
Branch Jump Expanded to
------ ------ ------------

bbc chkbit; bno
bbs chkbit; bo

cmpibe cmpije cmpi; be
cmpibg cmpijg cmpi; bg
cmpibge cmpijge cmpi; bge
cmpibl cmpijl cmpi; bl
cmpible cmpijle cmpi; ble
cmpibno cmpijno cmpi; bno
cmpibne cmpijne cmpi; bne
cmpibo cmpijo cmpi; bo
cmpobe cmpoje cmpo; be
cmpobg cmpojg cmpo; bg
cmpobge cmpojge cmpo; bge
cmpobl cmpojl cmpo; bl
cmpoble cmpojle cmpo; ble
cmpobne cmpojne cmpo; bne

1.178 M68K-Dependent

M680x0 Dependent Features
=========================

* Menu:

*
M68K-Opts

M680x0 Options

*

as 89 / 126

M68K-Syntax
Syntax

*
M68K-Moto-Syntax

Motorola Syntax

*
M68K-Float

Floating Point

*
M68K-Directives

680x0 Machine Directives

*
M68K-opcodes

Opcodes

1.179 M68K-Opts

M680x0 Options

The Motorola 680x0 version of ‘as’ has two machine dependent options.
One shortens undefined references from 32 to 16 bits, while the other
is used to tell ‘as’ what kind of machine it is assembling for.

You can use the ‘-l’ option to shorten the size of references to
undefined symbols. If you do not use the ‘-l’ option, references to
undefined symbols are wide enough for a full ‘long’ (32 bits). (Since
‘as’ cannot know where these symbols end up, ‘as’ can only allocate
space for the linker to fill in later. Since ‘as’ does not know how
far away these symbols are, it allocates as much space as it can.) If
you use this option, the references are only one word wide (16 bits).
This may be useful if you want the object file to be as small as
possible, and you know that the relevant symbols are always less than
17 bits away.

The 680x0 version of ‘as’ is most frequently used to assemble
programs for the Motorola MC68020 microprocessor. Occasionally it is
used to assemble programs for the mostly similar, but slightly different
MC68000 or MC68010 microprocessors. You can give ‘as’ the options
‘-m68000’, ‘-mc68000’, ‘-m68010’, ‘-mc68010’, ‘-m68020’, and ‘-mc68020’
to tell it what processor is the target.

1.180 M68K-Syntax

Syntax

This syntax for the Motorola 680x0 was developed at MIT.

The 680x0 version of ‘as’ uses syntax compatible with the Sun
assembler. Intervening periods are ignored; for example, ‘movl’ is

as 90 / 126

equivalent to ‘move.l’.

In the following table "apc" stands for any of the address registers
(‘a0’ through ‘a7’), nothing, (‘’), the Program Counter (‘pc’), or the
zero-address relative to the program counter (‘zpc’).

The following addressing modes are understood:
"Immediate"

‘#DIGITS’

"Data Register"
‘d0’ through ‘d7’

"Address Register"
‘a0’ through ‘a7’
‘a7’ is also known as ‘sp’, i.e. the Stack Pointer. ‘a6’ is also
known as ‘fp’, the Frame Pointer.

"Address Register Indirect"
‘a0@’ through ‘a7@’

"Address Register Postincrement"
‘a0@+’ through ‘a7@+’

"Address Register Predecrement"
‘a0@-’ through ‘a7@-’

"Indirect Plus Offset"
‘APC@(DIGITS)’

"Index"
‘APC@(DIGITS,REGISTER:SIZE:SCALE)’

or ‘APC@(REGISTER:SIZE:SCALE)’

"Postindex"
‘APC@(DIGITS)@(DIGITS,REGISTER:SIZE:SCALE)’

or ‘APC@(DIGITS)@(REGISTER:SIZE:SCALE)’

"Preindex"
‘APC@(DIGITS,REGISTER:SIZE:SCALE)@(DIGITS)’

or ‘APC@(REGISTER:SIZE:SCALE)@(DIGITS)’

"Memory Indirect"
‘APC@(DIGITS)@(DIGITS)’

"Absolute"
‘SYMBOL’, or ‘DIGITS’

For some configurations, especially those where the compiler normally
does not prepend an underscore to the names of user variables, the
assembler requires a ‘%’ before any use of a register name. This is
intended to let the assembler distinguish between user variables and
registers named ‘a0’ through ‘a7’, and so on. The ‘%’ is always
accepted, but is only required for some configurations, notably

as 91 / 126

‘m68k-coff’.

1.181 M68K-Moto-Syntax

Motorola Syntax

The standard Motorola syntax for this chip differs from the syntax
already discussed (*note Syntax: M68K-Syntax.). ‘as’ can accept both
kinds of syntax, even within a single instruction. The two kinds of
syntax are fully compatible.

In particular, you may write or generate M68K assembler with the
following conventions:

(In the following table "apc" stands for any of the address
registers (‘a0’ through ‘a7’), nothing, (‘’), the Program Counter
(‘pc’), or the zero-address relative to the program counter (‘zpc’).)

The following additional addressing modes are understood:
"Address Register Indirect"

‘a0’ through ‘a7’
‘a7’ is also known as ‘sp’, i.e. the Stack Pointer. ‘a6’ is also
known as ‘fp’, the Frame Pointer.

"Address Register Postincrement"
‘(a0)+’ through ‘(a7)+’

"Address Register Predecrement"
‘-(a0)’ through ‘-(a7)’

"Indirect Plus Offset"
‘DIGITS(APC)’

"Index"
‘DIGITS(APC,(REGISTER.SIZE*SCALE)’
or ‘(APC,REGISTER.SIZE*SCALE)’
In either case, SIZE and SCALE are optional (SCALE defaults to
‘1’, SIZE defaults to ‘l’). SCALE can be ‘1’, ‘2’, ‘4’, or ‘8’.
SIZE can be ‘w’ or ‘l’. SCALE is only supported on the 68020 and
greater.

1.182 M68K-Float

Floating Point

The floating point code is not too well tested, and may have subtle
bugs in it.

Packed decimal (P) format floating literals are not supported. Feel
free to add the code!

as 92 / 126

The floating point formats generated by directives are these.

‘.float’
‘Single’ precision floating point constants.

‘.double’
‘Double’ precision floating point constants.

There is no directive to produce regions of memory holding extended
precision numbers, however they can be used as immediate operands to
floating-point instructions. Adding a directive to create extended
precision numbers would not be hard, but it has not yet seemed
necessary.

1.183 M68K-Directives

680x0 Machine Directives

In order to be compatible with the Sun assembler the 680x0 assembler
understands the following directives.

‘.data1’
This directive is identical to a ‘.data 1’ directive.

‘.data2’
This directive is identical to a ‘.data 2’ directive.

‘.even’
This directive is identical to a ‘.align 1’ directive.

‘.skip’
This directive is identical to a ‘.space’ directive.

1.184 M68K-opcodes

Opcodes

* Menu:

*
M68K-Branch

Branch Improvement

*
M68K-Chars

Special Characters

as 93 / 126

1.185 M68K-Branch

Branch Improvement
..................

Certain pseudo opcodes are permitted for branch instructions. They
expand to the shortest branch instruction that reach the target.
Generally these mnemonics are made by substituting ‘j’ for ‘b’ at the
start of a Motorola mnemonic.

The following table summarizes the pseudo-operations. A ‘*’ flags
cases that are more fully described after the table:

Displacement
+---
| 68020 68000/10

Pseudo-Op |BYTE WORD LONG LONG non-PC relative
+---

jbsr |bsrs bsr bsrl jsr jsr
jra |bras bra bral jmp jmp

* jXX |bXXs bXX bXXl bNXs;jmpl bNXs;jmp

* dbXX |dbXX dbXX dbXX; bra; jmpl

* fjXX |fbXXw fbXXw fbXXl fbNXw;jmp

XX: condition
NX: negative of condition XX

‘*’--see full description below

‘jbsr’
‘jra’

These are the simplest jump pseudo-operations; they always map to
one particular machine instruction, depending on the displacement
to the branch target.

‘jXX’
Here, ‘jXX’ stands for an entire family of pseudo-operations,
where XX is a conditional branch or condition-code test. The full
list of pseudo-ops in this family is:

jhi jls jcc jcs jne jeq jvc
jvs jpl jmi jge jlt jgt jle

For the cases of non-PC relative displacements and long
displacements on the 68000 or 68010, ‘as’ issues a longer code
fragment in terms of NX, the opposite condition to XX. For
example, for the non-PC relative case:

jXX foo
gives

bNXs oof
jmp foo

oof:

‘dbXX’
The full family of pseudo-operations covered here is

dbhi dbls dbcc dbcs dbne dbeq dbvc
dbvs dbpl dbmi dbge dblt dbgt dble

as 94 / 126

dbf dbra dbt

Other than for word and byte displacements, when the source reads
‘dbXX foo’, ‘as’ emits

dbXX oo1
bra oo2

oo1:jmpl foo
oo2:

‘fjXX’
This family includes

fjne fjeq fjge fjlt fjgt fjle fjf
fjt fjgl fjgle fjnge fjngl fjngle fjngt
fjnle fjnlt fjoge fjogl fjogt fjole fjolt
fjor fjseq fjsf fjsne fjst fjueq fjuge
fjugt fjule fjult fjun

For branch targets that are not PC relative, ‘as’ emits
fbNX oof
jmp foo

oof:
when it encounters ‘fjXX foo’.

1.186 M68K-Chars

Special Characters
..................

The immediate character is ‘#’ for Sun compatibility. The
line-comment character is ‘|’. If a ‘#’ appears at the beginning of a
line, it is treated as a comment unless it looks like ‘# line file’, in
which case it is treated normally.

1.187 Sparc-Dependent

SPARC Dependent Features
========================

* Menu:

*
Sparc-Opts

Options

*
Sparc-Float

Floating Point

*
Sparc-Directives

Sparc Machine Directives

as 95 / 126

1.188 Sparc-Opts

Options

The SPARC chip family includes several successive levels (or other
variants) of chip, using the same core instruction set, but including a
few additional instructions at each level.

By default, ‘as’ assumes the core instruction set (SPARC v6), but
"bumps" the architecture level as needed: it switches to successively
higher architectures as it encounters instructions that only exist in
the higher levels.

‘-Av6 | -Av7 | -Av8 | -Asparclite’
Use one of the ‘-A’ options to select one of the SPARC
architectures explicitly. If you select an architecture
explicitly, ‘as’ reports a fatal error if it encounters an
instruction or feature requiring a higher level.

‘-bump’
Permit the assembler to "bump" the architecture level as required,
but warn whenever it is necessary to switch to another level.

1.189 Sparc-Float

Floating Point

The Sparc uses IEEE floating-point numbers.

1.190 Sparc-Directives

Sparc Machine Directives

The Sparc version of ‘as’ supports the following additional machine
directives:

‘.common’
This must be followed by a symbol name, a positive number, and
‘"bss"’. This behaves somewhat like ‘.comm’, but the syntax is
different.

‘.half’
This is functionally identical to ‘.short’.

‘.proc’
This directive is ignored. Any text following it on the same line
is also ignored.

‘.reserve’

as 96 / 126

This must be followed by a symbol name, a positive number, and
‘"bss"’. This behaves somewhat like ‘.lcomm’, but the syntax is
different.

‘.seg’
This must be followed by ‘"text"’, ‘"data"’, or ‘"data1"’. It
behaves like ‘.text’, ‘.data’, or ‘.data 1’.

‘.skip’
This is functionally identical to the ‘.space’ directive.

‘.word’
On the Sparc, the .word directive produces 32 bit values, instead
of the 16 bit values it produces on many other machines.

1.191 i386-Dependent

80386 Dependent Features
========================

* Menu:

*
i386-Options

Options

*
i386-Syntax

AT&T Syntax versus Intel Syntax

*
i386-Opcodes

Opcode Naming

*
i386-Regs

Register Naming

*
i386-prefixes

Opcode Prefixes

*
i386-Memory

Memory References

*
i386-jumps

Handling of Jump Instructions

*
i386-Float

Floating Point

*
i386-Notes

Notes

1.192 i386-Options

as 97 / 126

Options

The 80386 has no machine dependent options.

1.193 i386-Syntax

AT&T Syntax versus Intel Syntax

In order to maintain compatibility with the output of ‘gcc’, ‘as’
supports AT&T System V/386 assembler syntax. This is quite different
from Intel syntax. We mention these differences because almost all
80386 documents used only Intel syntax. Notable differences between
the two syntaxes are:

* AT&T immediate operands are preceded by ‘$’; Intel immediate
operands are undelimited (Intel ‘push 4’ is AT&T ‘pushl $4’).
AT&T register operands are preceded by ‘%’; Intel register operands
are undelimited. AT&T absolute (as opposed to PC relative)
jump/call operands are prefixed by ‘*’; they are undelimited in
Intel syntax.

* AT&T and Intel syntax use the opposite order for source and
destination operands. Intel ‘add eax, 4’ is ‘addl $4, %eax’. The
‘source, dest’ convention is maintained for compatibility with
previous Unix assemblers.

* In AT&T syntax the size of memory operands is determined from the
last character of the opcode name. Opcode suffixes of ‘b’, ‘w’,
and ‘l’ specify byte (8-bit), word (16-bit), and long (32-bit)
memory references. Intel syntax accomplishes this by prefixes
memory operands (*not* the opcodes themselves) with ‘byte ptr’,
‘word ptr’, and ‘dword ptr’. Thus, Intel ‘mov al, byte ptr FOO’
is ‘movb FOO, %al’ in AT&T syntax.

* Immediate form long jumps and calls are ‘lcall/ljmp $SECTION,
$OFFSET’ in AT&T syntax; the Intel syntax is ‘call/jmp far
SECTION:OFFSET’. Also, the far return instruction is ‘lret
$STACK-ADJUST’ in AT&T syntax; Intel syntax is ‘ret far
STACK-ADJUST’.

* The AT&T assembler does not provide support for multiple section
programs. Unix style systems expect all programs to be single
sections.

1.194 i386-Opcodes

Opcode Naming

as 98 / 126

Opcode names are suffixed with one character modifiers which specify
the size of operands. The letters ‘b’, ‘w’, and ‘l’ specify byte,
word, and long operands. If no suffix is specified by an instruction
and it contains no memory operands then ‘as’ tries to fill in the
missing suffix based on the destination register operand (the last one
by convention). Thus, ‘mov %ax, %bx’ is equivalent to ‘movw %ax, %bx’;
also, ‘mov $1, %bx’ is equivalent to ‘movw $1, %bx’. Note that this is
incompatible with the AT&T Unix assembler which assumes that a missing
opcode suffix implies long operand size. (This incompatibility does
not affect compiler output since compilers always explicitly specify
the opcode suffix.)

Almost all opcodes have the same names in AT&T and Intel format.
There are a few exceptions. The sign extend and zero extend
instructions need two sizes to specify them. They need a size to
sign/zero extend *from* and a size to zero extend *to*. This is
accomplished by using two opcode suffixes in AT&T syntax. Base names
for sign extend and zero extend are ‘movs...’ and ‘movz...’ in AT&T
syntax (‘movsx’ and ‘movzx’ in Intel syntax). The opcode suffixes are
tacked on to this base name, the *from* suffix before the *to* suffix.
Thus, ‘movsbl %al, %edx’ is AT&T syntax for "move sign extend *from*
%al *to* %edx." Possible suffixes, thus, are ‘bl’ (from byte to long),
‘bw’ (from byte to word), and ‘wl’ (from word to long).

The Intel-syntax conversion instructions

* ‘cbw’ -- sign-extend byte in ‘%al’ to word in ‘%ax’,

* ‘cwde’ -- sign-extend word in ‘%ax’ to long in ‘%eax’,

* ‘cwd’ -- sign-extend word in ‘%ax’ to long in ‘%dx:%ax’,

* ‘cdq’ -- sign-extend dword in ‘%eax’ to quad in ‘%edx:%eax’,

are called ‘cbtw’, ‘cwtl’, ‘cwtd’, and ‘cltd’ in AT&T naming. ‘as’
accepts either naming for these instructions.

Far call/jump instructions are ‘lcall’ and ‘ljmp’ in AT&T syntax,
but are ‘call far’ and ‘jump far’ in Intel convention.

1.195 i386-Regs

Register Naming

Register operands are always prefixes with ‘%’. The 80386 registers
consist of

* the 8 32-bit registers ‘%eax’ (the accumulator), ‘%ebx’, ‘%ecx’,
‘%edx’, ‘%edi’, ‘%esi’, ‘%ebp’ (the frame pointer), and ‘%esp’
(the stack pointer).

* the 8 16-bit low-ends of these: ‘%ax’, ‘%bx’, ‘%cx’, ‘%dx’, ‘%di’,
‘%si’, ‘%bp’, and ‘%sp’.

as 99 / 126

* the 8 8-bit registers: ‘%ah’, ‘%al’, ‘%bh’, ‘%bl’, ‘%ch’, ‘%cl’,
‘%dh’, and ‘%dl’ (These are the high-bytes and low-bytes of ‘%ax’,
‘%bx’, ‘%cx’, and ‘%dx’)

* the 6 section registers ‘%cs’ (code section), ‘%ds’ (data
section), ‘%ss’ (stack section), ‘%es’, ‘%fs’, and ‘%gs’.

* the 3 processor control registers ‘%cr0’, ‘%cr2’, and ‘%cr3’.

* the 6 debug registers ‘%db0’, ‘%db1’, ‘%db2’, ‘%db3’, ‘%db6’, and
‘%db7’.

* the 2 test registers ‘%tr6’ and ‘%tr7’.

* the 8 floating point register stack ‘%st’ or equivalently
‘%st(0)’, ‘%st(1)’, ‘%st(2)’, ‘%st(3)’, ‘%st(4)’, ‘%st(5)’,
‘%st(6)’, and ‘%st(7)’.

1.196 i386-prefixes

Opcode Prefixes

Opcode prefixes are used to modify the following opcode. They are
used to repeat string instructions, to provide section overrides, to
perform bus lock operations, and to give operand and address size
(16-bit operands are specified in an instruction by prefixing what would
normally be 32-bit operands with a "operand size" opcode prefix).
Opcode prefixes are usually given as single-line instructions with no
operands, and must directly precede the instruction they act upon. For
example, the ‘scas’ (scan string) instruction is repeated with:

repne
scas

Here is a list of opcode prefixes:

* Section override prefixes ‘cs’, ‘ds’, ‘ss’, ‘es’, ‘fs’, ‘gs’.
These are automatically added by specifying using the
SECTION:MEMORY-OPERAND form for memory references.

* Operand/Address size prefixes ‘data16’ and ‘addr16’ change 32-bit
operands/addresses into 16-bit operands/addresses. Note that
16-bit addressing modes (i.e. 8086 and 80286 addressing modes) are
not supported (yet).

* The bus lock prefix ‘lock’ inhibits interrupts during execution of
the instruction it precedes. (This is only valid with certain
instructions; see a 80386 manual for details).

* The wait for coprocessor prefix ‘wait’ waits for the coprocessor
to complete the current instruction. This should never be needed
for the 80386/80387 combination.

* The ‘rep’, ‘repe’, and ‘repne’ prefixes are added to string

as 100 / 126

instructions to make them repeat ‘%ecx’ times.

1.197 i386-Memory

Memory References

An Intel syntax indirect memory reference of the form

SECTION:[BASE + INDEX*SCALE + DISP]

is translated into the AT&T syntax

SECTION:DISP(BASE, INDEX, SCALE)

where BASE and INDEX are the optional 32-bit base and index registers,
DISP is the optional displacement, and SCALE, taking the values 1, 2,
4, and 8, multiplies INDEX to calculate the address of the operand. If
no SCALE is specified, SCALE is taken to be 1. SECTION specifies the
optional section register for the memory operand, and may override the
default section register (see a 80386 manual for section register
defaults). Note that section overrides in AT&T syntax *must* have be
preceded by a ‘%’. If you specify a section override which coincides
with the default section register, ‘as’ does *not* output any section
register override prefixes to assemble the given instruction. Thus,
section overrides can be specified to emphasize which section register
is used for a given memory operand.

Here are some examples of Intel and AT&T style memory references:

AT&T: ‘-4(%ebp)’, Intel: ‘[ebp - 4]’
BASE is ‘%ebp’; DISP is ‘-4’. SECTION is missing, and the default
section is used (‘%ss’ for addressing with ‘%ebp’ as the base
register). INDEX, SCALE are both missing.

AT&T: ‘foo(,%eax,4)’, Intel: ‘[foo + eax*4]’
INDEX is ‘%eax’ (scaled by a SCALE 4); DISP is ‘foo’. All other
fields are missing. The section register here defaults to ‘%ds’.

AT&T: ‘foo(,1)’; Intel ‘[foo]’
This uses the value pointed to by ‘foo’ as a memory operand. Note
that BASE and INDEX are both missing, but there is only *one* ‘,’.
This is a syntactic exception.

AT&T: ‘%gs:foo’; Intel ‘gs:foo’
This selects the contents of the variable ‘foo’ with section
register SECTION being ‘%gs’.

Absolute (as opposed to PC relative) call and jump operands must be
prefixed with ‘*’. If no ‘*’ is specified, ‘as’ always chooses PC
relative addressing for jump/call labels.

Any instruction that has a memory operand *must* specify its size
(byte, word, or long) with an opcode suffix (‘b’, ‘w’, or ‘l’,

as 101 / 126

respectively).

1.198 i386-jumps

Handling of Jump Instructions

Jump instructions are always optimized to use the smallest possible
displacements. This is accomplished by using byte (8-bit) displacement
jumps whenever the target is sufficiently close. If a byte displacement
is insufficient a long (32-bit) displacement is used. We do not support
word (16-bit) displacement jumps (i.e. prefixing the jump instruction
with the ‘addr16’ opcode prefix), since the 80386 insists upon masking
‘%eip’ to 16 bits after the word displacement is added.

Note that the ‘jcxz’, ‘jecxz’, ‘loop’, ‘loopz’, ‘loope’, ‘loopnz’
and ‘loopne’ instructions only come in byte displacements, so that if
you use these instructions (‘gcc’ does not use them) you may get an
error message (and incorrect code). The AT&T 80386 assembler tries to
get around this problem by expanding ‘jcxz foo’ to

jcxz cx_zero
jmp cx_nonzero

cx_zero: jmp foo
cx_nonzero:

1.199 i386-Float

Floating Point

All 80387 floating point types except packed BCD are supported.
(BCD support may be added without much difficulty). These data types
are 16-, 32-, and 64- bit integers, and single (32-bit), double
(64-bit), and extended (80-bit) precision floating point. Each
supported type has an opcode suffix and a constructor associated with
it. Opcode suffixes specify operand’s data types. Constructors build
these data types into memory.

* Floating point constructors are ‘.float’ or ‘.single’, ‘.double’,
and ‘.tfloat’ for 32-, 64-, and 80-bit formats. These correspond
to opcode suffixes ‘s’, ‘l’, and ‘t’. ‘t’ stands for temporary
real, and that the 80387 only supports this format via the ‘fldt’
(load temporary real to stack top) and ‘fstpt’ (store temporary
real and pop stack) instructions.

* Integer constructors are ‘.word’, ‘.long’ or ‘.int’, and ‘.quad’
for the 16-, 32-, and 64-bit integer formats. The corresponding
opcode suffixes are ‘s’ (single), ‘l’ (long), and ‘q’ (quad). As
with the temporary real format the 64-bit ‘q’ format is only
present in the ‘fildq’ (load quad integer to stack top) and
‘fistpq’ (store quad integer and pop stack) instructions.

as 102 / 126

Register to register operations do not require opcode suffixes, so
that ‘fst %st, %st(1)’ is equivalent to ‘fstl %st, %st(1)’.

Since the 80387 automatically synchronizes with the 80386 ‘fwait’
instructions are almost never needed (this is not the case for the
80286/80287 and 8086/8087 combinations). Therefore, ‘as’ suppresses
the ‘fwait’ instruction whenever it is implicitly selected by one of
the ‘fn...’ instructions. For example, ‘fsave’ and ‘fnsave’ are
treated identically. In general, all the ‘fn...’ instructions are made
equivalent to ‘f...’ instructions. If ‘fwait’ is desired it must be
explicitly coded.

1.200 i386-Notes

Notes

There is some trickery concerning the ‘mul’ and ‘imul’ instructions
that deserves mention. The 16-, 32-, and 64-bit expanding multiplies
(base opcode ‘0xf6’; extension 4 for ‘mul’ and 5 for ‘imul’) can be
output only in the one operand form. Thus, ‘imul %ebx, %eax’ does

not select the expanding multiply; the expanding multiply would
clobber the ‘%edx’ register, and this would confuse ‘gcc’ output. Use
‘imul %ebx’ to get the 64-bit product in ‘%edx:%eax’.

We have added a two operand form of ‘imul’ when the first operand is
an immediate mode expression and the second operand is a register.
This is just a shorthand, so that, multiplying ‘%eax’ by 69, for
example, can be done with ‘imul $69, %eax’ rather than ‘imul $69, %eax,
%eax’.

1.201 Z8000-Dependent

Z8000 Dependent Features
========================

The Z8000 as supports both members of the Z8000 family: the
unsegmented Z8002, with 16 bit addresses, and the segmented Z8001 with
24 bit addresses.

When the assembler is in unsegmented mode (specified with the
‘unsegm’ directive), an address takes up one word (16 bit) sized
register. When the assembler is in segmented mode (specified with the
‘segm’ directive), a 24-bit address takes up a long (32 bit) register.

*Note Assembler Directives for the Z8000: Z8000 Directives, for a list
of other Z8000 specific assembler directives.

* Menu:

*
Z8000 Options

as 103 / 126

No special command-line options for Z8000

*
Z8000 Syntax

Assembler syntax for the Z8000

*
Z8000 Directives

Special directives for the Z8000

*
Z8000 Opcodes

Opcodes

1.202 Z8000 Options

Options

‘as’ has no additional command-line options for the Zilog Z8000
family.

1.203 Z8000 Syntax

Syntax

* Menu:

*
Z8000-Chars

Special Characters

*
Z8000-Regs

Register Names

*
Z8000-Addressing

Addressing Modes

1.204 Z8000-Chars

Special Characters
..................

‘!’ is the line comment character.

You can use ‘;’ instead of a newline to separate statements.

as 104 / 126

1.205 Z8000-Regs

Register Names
..............

The Z8000 has sixteen 16 bit registers, numbered 0 to 15. You can
refer to different sized groups of registers by register number, with
the prefix ‘r’ for 16 bit registers, ‘rr’ for 32 bit registers and ‘rq’
for 64 bit registers. You can also refer to the contents of the first
eight (of the sixteen 16 bit registers) by bytes. They are named ‘rNh’
and ‘rNl’.

byte registers
r0l r0h r1h r1l r2h r2l r3h r3l
r4h r4l r5h r5l r6h r6l r7h r7l

word registers
r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15

long word registers
rr0 rr2 rr4 rr6 rr8 rr10 rr12 rr14

quad word registers
rq0 rq4 rq8 rq12

1.206 Z8000-Addressing

Addressing Modes
................

as understands the following addressing modes for the Z8000:

‘rN’
Register direct

‘@rN’
Indirect register

‘ADDR’
Direct: the 16 bit or 24 bit address (depending on whether the
assembler is in segmented or unsegmented mode) of the operand is
in the instruction.

‘address(rN)’
Indexed: the 16 or 24 bit address is added to the 16 bit register
to produce the final address in memory of the operand.

‘rN(#IMM)’
Base Address: the 16 or 24 bit register is added to the 16 bit sign
extended immediate displacement to produce the final address in
memory of the operand.

‘rN(rM)’
Base Index: the 16 or 24 bit register rN is added to the sign
extended 16 bit index register rM to produce the final address in
memory of the operand.

as 105 / 126

‘#XX’
Immediate data XX.

1.207 Z8000 Directives

Assembler Directives for the Z8000

The Z8000 port of as includes these additional assembler directives,
for compatibility with other Z8000 assemblers. As shown, these do not
begin with ‘.’ (unlike the ordinary as directives).

‘segm’
Generates code for the segmented Z8001.

‘unsegm’
Generates code for the unsegmented Z8002.

‘name’
Synonym for ‘.file’

‘global’
Synonum for ‘.global’

‘wval’
Synonym for ‘.word’

‘lval’
Synonym for ‘.long’

‘bval’
Synonym for ‘.byte’

‘sval’
Assemble a string. ‘sval’ expects one string literal, delimited by
single quotes. It assembles each byte of the string into
consecutive addresses. You can use the escape sequence ‘%XX’
(where XX represents a two-digit hexadecimal number) to represent
the character whose ASCII value is XX. Use this feature to
describe single quote and other characters that may not appear in
string literals as themselves. For example, the C statement
‘char *a = "he said \"it’s 50% off\"";’ is represented in Z8000
assembly language (shown with the assembler output in hex at the
left) as

68652073 sval ’he said %22it%27s 50%25 off%22%00’
61696420
22697427
73203530
25206F66
662200

‘rsect’
synonym for ‘.section’

as 106 / 126

‘block’
synonym for ‘.space’

‘even’
synonym for ‘.align 1’

1.208 Z8000 Opcodes

Opcodes

For detailed information on the Z8000 machine instruction set, see
‘Z8000 Technical Manual’.

The following table summarizes the opcodes and their arguments:

rs 16 bit source register
rd 16 bit destination register
rbs 8 bit source register
rbd 8 bit destination register
rrs 32 bit source register
rrd 32 bit destination register
rqs 64 bit source register
rqd 64 bit destination register
addr 16/24 bit address
imm immediate data

adc rd,rs clrb addr cpsir @rd,@rs,rr,cc
adcb rbd,rbs clrb addr(rd) cpsirb @rd,@rs,rr,cc
add rd,@rs clrb rbd dab rbd
add rd,addr com @rd dbjnz rbd,disp7
add rd,addr(rs) com addr dec @rd,imm4m1
add rd,imm16 com addr(rd) dec addr(rd),imm4m1
add rd,rs com rd dec addr,imm4m1
addb rbd,@rs comb @rd dec rd,imm4m1
addb rbd,addr comb addr decb @rd,imm4m1
addb rbd,addr(rs) comb addr(rd) decb addr(rd),imm4m1
addb rbd,imm8 comb rbd decb addr,imm4m1
addb rbd,rbs comflg flags decb rbd,imm4m1
addl rrd,@rs cp @rd,imm16 di i2
addl rrd,addr cp addr(rd),imm16 div rrd,@rs
addl rrd,addr(rs) cp addr,imm16 div rrd,addr
addl rrd,imm32 cp rd,@rs div rrd,addr(rs)
addl rrd,rrs cp rd,addr div rrd,imm16
and rd,@rs cp rd,addr(rs) div rrd,rs
and rd,addr cp rd,imm16 divl rqd,@rs
and rd,addr(rs) cp rd,rs divl rqd,addr
and rd,imm16 cpb @rd,imm8 divl rqd,addr(rs)
and rd,rs cpb addr(rd),imm8 divl rqd,imm32
andb rbd,@rs cpb addr,imm8 divl rqd,rrs
andb rbd,addr cpb rbd,@rs djnz rd,disp7
andb rbd,addr(rs) cpb rbd,addr ei i2
andb rbd,imm8 cpb rbd,addr(rs) ex rd,@rs
andb rbd,rbs cpb rbd,imm8 ex rd,addr
bit @rd,imm4 cpb rbd,rbs ex rd,addr(rs)

as 107 / 126

bit addr(rd),imm4 cpd rd,@rs,rr,cc ex rd,rs
bit addr,imm4 cpdb rbd,@rs,rr,cc exb rbd,@rs
bit rd,imm4 cpdr rd,@rs,rr,cc exb rbd,addr
bit rd,rs cpdrb rbd,@rs,rr,cc exb rbd,addr(rs)
bitb @rd,imm4 cpi rd,@rs,rr,cc exb rbd,rbs
bitb addr(rd),imm4 cpib rbd,@rs,rr,cc ext0e imm8
bitb addr,imm4 cpir rd,@rs,rr,cc ext0f imm8
bitb rbd,imm4 cpirb rbd,@rs,rr,cc ext8e imm8
bitb rbd,rs cpl rrd,@rs ext8f imm8
bpt cpl rrd,addr exts rrd
call @rd cpl rrd,addr(rs) extsb rd
call addr cpl rrd,imm32 extsl rqd
call addr(rd) cpl rrd,rrs halt
calr disp12 cpsd @rd,@rs,rr,cc in rd,@rs
clr @rd cpsdb @rd,@rs,rr,cc in rd,imm16
clr addr cpsdr @rd,@rs,rr,cc inb rbd,@rs
clr addr(rd) cpsdrb @rd,@rs,rr,cc inb rbd,imm16
clr rd cpsi @rd,@rs,rr,cc inc @rd,imm4m1
clrb @rd cpsib @rd,@rs,rr,cc inc addr(rd),imm4m1
inc addr,imm4m1 ldb rbd,rs(rx) mult rrd,addr(rs)
inc rd,imm4m1 ldb rd(imm16),rbs mult rrd,imm16
incb @rd,imm4m1 ldb rd(rx),rbs mult rrd,rs
incb addr(rd),imm4m1 ldctl ctrl,rs multl rqd,@rs
incb addr,imm4m1 ldctl rd,ctrl multl rqd,addr
incb rbd,imm4m1 ldd @rs,@rd,rr multl rqd,addr(rs)
ind @rd,@rs,ra lddb @rs,@rd,rr multl rqd,imm32
indb @rd,@rs,rba lddr @rs,@rd,rr multl rqd,rrs
inib @rd,@rs,ra lddrb @rs,@rd,rr neg @rd
inibr @rd,@rs,ra ldi @rd,@rs,rr neg addr
iret ldib @rd,@rs,rr neg addr(rd)
jp cc,@rd ldir @rd,@rs,rr neg rd
jp cc,addr ldirb @rd,@rs,rr negb @rd
jp cc,addr(rd) ldk rd,imm4 negb addr
jr cc,disp8 ldl @rd,rrs negb addr(rd)
ld @rd,imm16 ldl addr(rd),rrs negb rbd
ld @rd,rs ldl addr,rrs nop
ld addr(rd),imm16 ldl rd(imm16),rrs or rd,@rs
ld addr(rd),rs ldl rd(rx),rrs or rd,addr
ld addr,imm16 ldl rrd,@rs or rd,addr(rs)
ld addr,rs ldl rrd,addr or rd,imm16
ld rd(imm16),rs ldl rrd,addr(rs) or rd,rs
ld rd(rx),rs ldl rrd,imm32 orb rbd,@rs
ld rd,@rs ldl rrd,rrs orb rbd,addr
ld rd,addr ldl rrd,rs(imm16) orb rbd,addr(rs)
ld rd,addr(rs) ldl rrd,rs(rx) orb rbd,imm8
ld rd,imm16 ldm @rd,rs,n orb rbd,rbs
ld rd,rs ldm addr(rd),rs,n out @rd,rs
ld rd,rs(imm16) ldm addr,rs,n out imm16,rs
ld rd,rs(rx) ldm rd,@rs,n outb @rd,rbs
lda rd,addr ldm rd,addr(rs),n outb imm16,rbs
lda rd,addr(rs) ldm rd,addr,n outd @rd,@rs,ra
lda rd,rs(imm16) ldps @rs outdb @rd,@rs,rba
lda rd,rs(rx) ldps addr outib @rd,@rs,ra
ldar rd,disp16 ldps addr(rs) outibr @rd,@rs,ra
ldb @rd,imm8 ldr disp16,rs pop @rd,@rs
ldb @rd,rbs ldr rd,disp16 pop addr(rd),@rs
ldb addr(rd),imm8 ldrb disp16,rbs pop addr,@rs

as 108 / 126

ldb addr(rd),rbs ldrb rbd,disp16 pop rd,@rs
ldb addr,imm8 ldrl disp16,rrs popl @rd,@rs
ldb addr,rbs ldrl rrd,disp16 popl addr(rd),@rs
ldb rbd,@rs mbit popl addr,@rs
ldb rbd,addr mreq rd popl rrd,@rs
ldb rbd,addr(rs) mres push @rd,@rs
ldb rbd,imm8 mset push @rd,addr
ldb rbd,rbs mult rrd,@rs push @rd,addr(rs)
ldb rbd,rs(imm16) mult rrd,addr push @rd,imm16
push @rd,rs set addr,imm4 subl rrd,imm32
pushl @rd,@rs set rd,imm4 subl rrd,rrs
pushl @rd,addr set rd,rs tcc cc,rd
pushl @rd,addr(rs) setb @rd,imm4 tccb cc,rbd
pushl @rd,rrs setb addr(rd),imm4 test @rd
res @rd,imm4 setb addr,imm4 test addr
res addr(rd),imm4 setb rbd,imm4 test addr(rd)
res addr,imm4 setb rbd,rs test rd
res rd,imm4 setflg imm4 testb @rd
res rd,rs sinb rbd,imm16 testb addr
resb @rd,imm4 sinb rd,imm16 testb addr(rd)
resb addr(rd),imm4 sind @rd,@rs,ra testb rbd
resb addr,imm4 sindb @rd,@rs,rba testl @rd
resb rbd,imm4 sinib @rd,@rs,ra testl addr
resb rbd,rs sinibr @rd,@rs,ra testl addr(rd)
resflg imm4 sla rd,imm8 testl rrd
ret cc slab rbd,imm8 trdb @rd,@rs,rba
rl rd,imm1or2 slal rrd,imm8 trdrb @rd,@rs,rba
rlb rbd,imm1or2 sll rd,imm8 trib @rd,@rs,rbr
rlc rd,imm1or2 sllb rbd,imm8 trirb @rd,@rs,rbr
rlcb rbd,imm1or2 slll rrd,imm8 trtdrb @ra,@rb,rbr
rldb rbb,rba sout imm16,rs trtib @ra,@rb,rr
rr rd,imm1or2 soutb imm16,rbs trtirb @ra,@rb,rbr
rrb rbd,imm1or2 soutd @rd,@rs,ra trtrb @ra,@rb,rbr
rrc rd,imm1or2 soutdb @rd,@rs,rba tset @rd
rrcb rbd,imm1or2 soutib @rd,@rs,ra tset addr
rrdb rbb,rba soutibr @rd,@rs,ra tset addr(rd)
rsvd36 sra rd,imm8 tset rd
rsvd38 srab rbd,imm8 tsetb @rd
rsvd78 sral rrd,imm8 tsetb addr
rsvd7e srl rd,imm8 tsetb addr(rd)
rsvd9d srlb rbd,imm8 tsetb rbd
rsvd9f srll rrd,imm8 xor rd,@rs
rsvdb9 sub rd,@rs xor rd,addr
rsvdbf sub rd,addr xor rd,addr(rs)
sbc rd,rs sub rd,addr(rs) xor rd,imm16
sbcb rbd,rbs sub rd,imm16 xor rd,rs
sc imm8 sub rd,rs xorb rbd,@rs
sda rd,rs subb rbd,@rs xorb rbd,addr
sdab rbd,rs subb rbd,addr xorb rbd,addr(rs)
sdal rrd,rs subb rbd,addr(rs) xorb rbd,imm8
sdl rd,rs subb rbd,imm8 xorb rbd,rbs
sdlb rbd,rs subb rbd,rbs xorb rbd,rbs
sdll rrd,rs subl rrd,@rs
set @rd,imm4 subl rrd,addr
set addr(rd),imm4 subl rrd,addr(rs)

as 109 / 126

1.209 MIPS-Dependent

MIPS Dependent Features
=======================

GNU ‘as’ for MIPS architectures supports the MIPS R2000, R3000,
R4000 and R6000 processors. For information about the MIPS instruction
set, see ‘MIPS RISC Architecture’, by Kane and Heindrich
(Prentice-Hall). For an overview of MIPS assembly conventions, see
"Appendix D: Assembly Language Programming" in the same work.

* Menu:

*
MIPS Opts

Assembler options

*
MIPS Object

ECOFF object code

*
MIPS Stabs

Directives for debugging information

*
MIPS ISA

Directives to override the ISA level

1.210 MIPS Opts

Assembler options

The MIPS configurations of GNU ‘as’ support these special options:

‘-G NUM’
This option sets the largest size of an object that can be
referenced implicitly with the ‘gp’ register. It is only accepted
for targets that use ECOFF format. The default value is 8.

‘-EB’
‘-EL’

Any MIPS configuration of ‘as’ can select big-endian or
little-endian output at run time (unlike the other GNU development
tools, which must be configured for one or the other). Use ‘-EB’
to select big-endian output, and ‘-EL’ for little-endian.

‘-mips1’
‘-mips2’
‘-mips3’

Generate code for a particular MIPS Instruction Set Architecture
level. ‘-mips1’ corresponds to the R2000 and R3000 processors,
‘-mips2’ to the R6000 processor, and ‘-mips3’ to the R4000
processor. You can also switch instruction sets during the
assembly; see *Note Directives to override the ISA level: MIPS ISA.

as 110 / 126

‘-nocpp’
This option is ignored. It is accepted for command-line
compatibility with other assemblers, which use it to turn off C
style preprocessing. With GNU ‘as’, there is no need for
‘-nocpp’, because the GNU assembler itself never runs the C
preprocessor.

‘--trap’
‘--no-break’

‘as’ automatically macro expands certain division and
multiplication instructions to check for overflow and division by
zero. This option causes ‘as’ to generate code to take a trap
exception rather than a break exception when an error is detected.
The trap instructions are only supported at Instruction Set
Architecture level 2 and higher.

‘--break’
‘--no-trap’

Generate code to take a break exception rather than a trap
exception when an error is detected. This is the default.

1.211 MIPS Object

MIPS ECOFF object code

Assembling for a MIPS ECOFF target supports some additional sections
besides the usual ‘.text’, ‘.data’ and ‘.bss’. The additional sections
are ‘.rdata’, used for read-only data, ‘.sdata’, used for small data,
and ‘.sbss’, used for small common objects.

When assembling for ECOFF, the assembler uses the ‘$gp’ (‘$28’)
register to form the address of a "small object". Any object in the
‘.sdata’ or ‘.sbss’ sections is considered "small" in this sense. For
external objects, or for objects in the ‘.bss’ section, you can use the
‘gcc’ ‘-G’ option to control the size of objects addressed via ‘$gp’;
the default value is 8, meaning that a reference to any object eight
bytes or smaller uses ‘$gp’. Passing ‘-G 0’ to ‘as’ prevents it from
using the ‘$gp’ register on the basis of object size (but the assembler
uses ‘$gp’ for objects in ‘.sdata’ or ‘sbss’ in any case). The size of
an object in the ‘.bss’ section is set by the ‘.comm’ or ‘.lcomm’
directive that defines it. The size of an external object may be set
with the ‘.extern’ directive. For example, ‘.extern sym,4’ declares
that the object at ‘sym’ is 4 bytes in length, whie leaving ‘sym’
otherwise undefined.

Using small ECOFF objects requires linker support, and assumes that
the ‘$gp’ register is correctly initialized (normally done
automatically by the startup code). MIPS ECOFF assembly code must not
modify the ‘$gp’ register.

as 111 / 126

1.212 MIPS Stabs

Directives for debugging information

MIPS ECOFF ‘as’ supports several directives used for generating
debugging information which are not support by traditional MIPS
assemblers. These are ‘.def’, ‘.endef’, ‘.dim’, ‘.file’, ‘.scl’,
‘.size’, ‘.tag’, ‘.type’, ‘.val’, ‘.stabd’, ‘.stabn’, and ‘.stabs’.
The debugging information generated by the three ‘.stab’ directives can
only be read by GDB, not by traditional MIPS debuggers (this
enhancement is required to fully support C++ debugging). These
directives are primarily used by compilers, not assembly language
programmers!

1.213 MIPS ISA

Directives to override the ISA level

GNU ‘as’ supports an additional directive to change the MIPS
Instruction Set Architecture level on the fly: ‘.set mipsN’. N should
be a number from 0 to 3. A value from 1 to 3 makes the assembler
accept instructions for the corresponding ISA level, from that point on
in the assembly. ‘.set mipsN’ affects not only which instructions are
permitted, but also how certain macros are expanded. ‘.set mips0’
restores the ISA level to its original level: either the level you
selected with command line options, or the default for your
configuration. You can use this feature to permit specific R4000
instructions while assembling in 32 bit mode. Use this directive with
care!

Traditional MIPS assemblers do not support this directive.

1.214 Acknowledgements

Acknowledgements

If you have contributed to ‘as’ and your name isn’t listed here, it
is not meant as a slight. We just don’t know about it. Send mail to
the maintainer, and we’ll correct the situation. Currently (January
1994), the maintainer is Ken Raeburn (email address
‘raeburn@cygnus.com’).

Dean Elsner wrote the original GNU assembler for the VAX.(1)

Jay Fenlason maintained GAS for a while, adding support for
GDB-specific debug information and the 68k series machines, most of the
preprocessing pass, and extensive changes in ‘messages.c’,
‘input-file.c’, ‘write.c’.

as 112 / 126

K. Richard Pixley maintained GAS for a while, adding various
enhancements and many bug fixes, including merging support for several
processors, breaking GAS up to handle multiple object file format back
ends (including heavy rewrite, testing, an integration of the coff and
b.out back ends), adding configuration including heavy testing and
verification of cross assemblers and file splits and renaming,
converted GAS to strictly ANSI C including full prototypes, added
support for m680[34]0 and cpu32, did considerable work on i960
including a COFF port (including considerable amounts of reverse
engineering), a SPARC opcode file rewrite, DECstation, rs6000, and
hp300hpux host ports, updated "know" assertions and made them work,
much other reorganization, cleanup, and lint.

Ken Raeburn wrote the high-level BFD interface code to replace most
of the code in format-specific I/O modules.

The original VMS support was contributed by David L. Kashtan. Eric
Youngdale has done much work with it since.

The Intel 80386 machine description was written by Eliot Dresselhaus.

Minh Tran-Le at IntelliCorp contributed some AIX 386 support.

The Motorola 88k machine description was contributed by Devon Bowen
of Buffalo University and Torbjorn Granlund of the Swedish Institute of
Computer Science.

Keith Knowles at the Open Software Foundation wrote the original
MIPS back end (‘tc-mips.c’, ‘tc-mips.h’), and contributed Rose format
support (which hasn’t been merged in yet). Ralph Campbell worked with
the MIPS code to support a.out format.

Support for the Zilog Z8k and Hitachi H8/300 and H8/500 processors
(tc-z8k, tc-h8300, tc-h8500), and IEEE 695 object file format
(obj-ieee), was written by Steve Chamberlain of Cygnus Support. Steve
also modified the COFF back end to use BFD for some low-level
operations, for use with the H8/300 and AMD 29k targets.

John Gilmore built the AMD 29000 support, added ‘.include’ support,
and simplified the configuration of which versions accept which
directives. He updated the 68k machine description so that Motorola’s
opcodes always produced fixed-size instructions (e.g. ‘jsr’), while
synthetic instructions remained shrinkable (‘jbsr’). John fixed many
bugs, including true tested cross-compilation support, and one bug in
relaxation that took a week and required the proverbial one-bit fix.

Ian Lance Taylor of Cygnus Support merged the Motorola and MIT
syntax for the 68k, completed support for some COFF targets (68k, i386
SVR3, and SCO Unix), added support for MIPS ECOFF and ELF targets, and
made a few other minor patches.

Steve Chamberlain made ‘as’ able to generate listings.

Hewlett-Packard contributed support for the HP9000/300.

Jeff Law wrote GAS and BFD support for the native HPPA object format
(SOM) along with a fairly extensive HPPA testsuite (for both SOM and

as 113 / 126

ELF object formats). This work was supported by both the Center for
Software Science at the University of Utah and Cygnus Support.

Support for ELF format files has been worked on by Mark Eichin of
Cygnus Support (original, incomplete implementation for SPARC), Pete
Hoogenboom and Jeff Law at the University of Utah (HPPA mainly),
Michael Meissner of the Open Software Foundation (i386 mainly), and Ken
Raeburn of Cygnus Support (sparc, and some initial 64-bit support).

Several engineers at Cygnus Support have also provided many small
bug fixes and configuration enhancements.

Many others have contributed large or small bugfixes and
enhancements. If you have contributed significant work and are not
mentioned on this list, and want to be, let us know. Some of the
history has been lost; we are not intentionally leaving anyone out.

---------- Footnotes ----------

(1) Any more details?

1.215 Index

Index

* Menu:

* #: Comments.

* #APP: Preprocessing.

* #NO_APP: Preprocessing.

* -: Command Line.

* -statistics: statistics.

* -a: a.

* -ad: a.

* -ah: a.

* -al: a.

* -an: a.

* -as: a.

* -Asparclite: Sparc-Opts.

* -Av6: Sparc-Opts.

* -Av8: Sparc-Opts.

* -D: D.

* -f: f.

* -I PATH: I.

* -K: K.

* -L: L.

* -o: o.

* -R: R.

* -v: v.

* -version: v.

* -W: W.

* .o: Object.

* 29K support: AMD29K-Dependent.

* $ in symbol names: SH-Chars.

as 114 / 126

* $ in symbol names: H8/500-Chars.

* -+ option, VAX/VMS: Vax-Opts.

* -A options, i960: Options-i960.

* -b option, i960: Options-i960.

* -D, ignored on VAX: Vax-Opts.

* -d, VAX option: Vax-Opts.

* -EB option (MIPS): MIPS Opts.

* -EL option (MIPS): MIPS Opts.

* -G option (MIPS): MIPS Opts.

* -h option, VAX/VMS: Vax-Opts.

* -J, ignored on VAX: Vax-Opts.

* -l option, M680x0: M68K-Opts.

* -m68000 and related options: M68K-Opts.

* -nocpp ignored (MIPS): MIPS Opts.

* -norelax option, i960: Options-i960.

* -S, ignored on VAX: Vax-Opts.

* -T, ignored on VAX: Vax-Opts.

* -t, ignored on VAX: Vax-Opts.

* -V, redundant on VAX: Vax-Opts.

* .param on HPPA: HPPA Directives.

* .set mipsN: MIPS ISA.

* . (symbol): Dot.

* : (label): Statements.

* as version: v.

* a.out symbol attributes: a.out Symbols.

* abort directive: Abort.

* ABORT directive: ABORT.

* align directive: Align.

* app-file directive: App-File.

* ascii directive: Ascii.

* asciz directive: Asciz.

* block directive, AMD 29K: AMD29K Directives.

* bss directive, i960: Directives-i960.

* byte directive: Byte.

* callj, i960 pseudo-opcode: callj-i960.

* common directive, SPARC: Sparc-Directives.

* comm directive: Comm.

* cputype directive, AMD 29K: AMD29K Directives.

* data1 directive, M680x0: M68K-Directives.

* data2 directive, M680x0: M68K-Directives.

* data directive: Data.

* def directive: Def.

* desc directive: Desc.

* dfloat directive, VAX: VAX-directives.

* dim directive: Dim.

* double directive: Double.

* double directive, i386: i386-Float.

* double directive, M680x0: M68K-Float.

* double directive, VAX: VAX-float.

* eject directive: Eject.

* else directive: Else.

* endef directive: Endef.

* endif directive: Endif.

* equ directive: Equ.

* even directive, M680x0: M68K-Directives.

* extended directive, i960: Directives-i960.

* extern directive: Extern.

as 115 / 126

* ffloat directive, VAX: VAX-directives.

* file directive: File.

* file directive, AMD 29K: AMD29K Directives.

* fill directive: Fill.

* float directive: Float.

* float directive, i386: i386-Float.

* float directive, M680x0: M68K-Float.

* float directive, VAX: VAX-float.

* fwait instruction, i386: i386-Float.

* gbr960, i960 postprocessor: Options-i960.

* gfloat directive, VAX: VAX-directives.

* global directive: Global.

* gp register, MIPS: MIPS Object.

* half directive, SPARC: Sparc-Directives.

* hfloat directive, VAX: VAX-directives.

* hword directive: hword.

* ident directive: Ident.

* ifdef directive: If.

* ifndef directive: If.

* ifnotdef directive: If.

* if directive: If.

* imul instruction, i386: i386-Notes.

* include directive: Include.

* include directive search path: I.

* int directive: Int.

* int directive, H8/300: H8/300 Directives.

* int directive, H8/500: H8/500 Directives.

* int directive, i386: i386-Float.

* int directive, SH: SH Directives.

* lcomm directive: Lcomm.

* leafproc directive, i960: Directives-i960.

* lflags directive (ignored): Lflags.

* line directive: Line.

* line directive, AMD 29K: AMD29K Directives.

* list directive: List.

* ln directive: Ln.

* long directive: Long.

* long directive, i386: i386-Float.

* mul instruction, i386: i386-Notes.

* nolist directive: Nolist.

* octa directive: Octa.

* org directive: Org.

* proc directive, SPARC: Sparc-Directives.

* psize directive: Psize.

* quad directive: Quad.

* quad directive, i386: i386-Float.

* reserve directive, SPARC: Sparc-Directives.

* sbttl directive: Sbttl.

* scl directive: Scl.

* section directive: Section.

* sect directive, AMD 29K: AMD29K Directives.

* seg directive, SPARC: Sparc-Directives.

* set directive: Set.

* short directive: Short.

* single directive: Single.

* single directive, i386: i386-Float.

* size directive: Size.

as 116 / 126

* skip directive, M680x0: M68K-Directives.

* skip directive, SPARC: Sparc-Directives.

* space directive: Space.

* stabX directives: Stab.

* stabd directive: Stab.

* stabn directive: Stab.

* stabs directive: Stab.

* string directive: String.

* string directive on HPPA: HPPA Directives.

* sysproc directive, i960: Directives-i960.

* tag directive: Tag.

* text directive: Text.

* tfloat directive, i386: i386-Float.

* title directive: Title.

* type directive: Type.

* use directive, AMD 29K: AMD29K Directives.

* val directive: Val.

* word directive: Word.

* word directive, H8/300: H8/300 Directives.

* word directive, H8/500: H8/500 Directives.

* word directive, i386: i386-Float.

* word directive, SH: SH Directives.

* word directive, SPARC: Sparc-Directives.

* \" (doublequote character): Strings.

* \DDD (octal character code): Strings.

* \XDD (hex character code): Strings.

* \b (backspace character): Strings.

* \f (formfeed character): Strings.

* \n (newline character): Strings.

* \r (carriage return character): Strings.

* \t (tab): Strings.

* \ (\ character): Strings.

* MIT: M68K-Syntax.

* a.out: Object.

* absolute section: Ld Sections.

* addition, permitted arguments: Infix Ops.

* addresses: Expressions.

* addresses, format of: Secs Background.

* addressing modes, H8/300: H8/300-Addressing.

* addressing modes, H8/500: H8/500-Addressing.

* addressing modes, M680x0: M68K-Syntax.

* addressing modes, M680x0: M68K-Moto-Syntax.

* addressing modes, SH: SH-Addressing.

* addressing modes, Z8000: Z8000-Addressing.

* advancing location counter: Org.

* altered difference tables: Word.

* alternate syntax for the 680x0: M68K-Moto-Syntax.

* AMD 29K floating point (IEEE): AMD29K Floating Point.

* AMD 29K identifiers: AMD29K-Chars.

* AMD 29K line comment character: AMD29K-Chars.

* AMD 29K line separator: AMD29K-Chars.

* AMD 29K machine directives: AMD29K Directives.

* AMD 29K opcodes: AMD29K Opcodes.

* AMD 29K options (none): AMD29K Options.

* AMD 29K protected registers: AMD29K-Regs.

* AMD 29K register names: AMD29K-Regs.

* AMD 29K special purpose registers: AMD29K-Regs.

as 117 / 126

* AMD 29K statement separator: AMD29K-Chars.

* AMD 29K support: AMD29K-Dependent.

* architecture options, i960: Options-i960.

* architecture options, M680x0: M68K-Opts.

* architectures, SPARC: Sparc-Opts.

* arguments for addition: Infix Ops.

* arguments for subtraction: Infix Ops.

* arguments in expressions: Arguments.

* arithmetic functions: Operators.

* arithmetic operands: Arguments.

* assembler internal logic error: As Sections.

* assembler, and linker: Secs Background.

* assembly listings, enabling: a.

* assigning values to symbols: Equ.

* assigning values to symbols: Setting Symbols.

* attributes, symbol: Symbol Attributes.

* auxiliary attributes, COFF symbols: COFF Symbols.

* auxiliary symbol information, COFF: Dim.

* Av7: Sparc-Opts.

* backslash (\): Strings.

* backspace (\b): Strings.

* big endian output, MIPS: Overview.

* big-endian output, MIPS: MIPS Opts.

* bignums: Bignums.

* binary integers: Integers.

* bitfields, not supported on VAX: VAX-no.

* block: Z8000 Directives.

* branch improvement, M680x0: M68K-Branch.

* branch improvement, VAX: VAX-branch.

* branch recording, i960: Options-i960.

* branch statistics table, i960: Options-i960.

* bss section: Ld Sections.

* bss section: bss.

* bus lock prefixes, i386: i386-prefixes.

* bval: Z8000 Directives.

* call instructions, i386: i386-Opcodes.

* carriage return (\r): Strings.

* character constants: Characters.

* character escape codes: Strings.

* character, single: Chars.

* characters used in symbols: Symbol Intro.

* COFF auxiliary symbol information: Dim.

* COFF named section: Section.

* COFF structure debugging: Tag.

* COFF symbol attributes: COFF Symbols.

* COFF symbol descriptor: Desc.

* COFF symbol storage class: Scl.

* COFF symbol type: Type.

* COFF symbols, debugging: Def.

* COFF value attribute: Val.

* command line conventions: Command Line.

* command-line options ignored, VAX: Vax-Opts.

* comments: Comments.

* comments, M680x0: M68K-Chars.

* comments, removed by preprocessor: Preprocessing.

* common variable storage: bss.

* compare and jump expansions, i960: Compare-and-branch-i960.

as 118 / 126

* compare/branch instructions, i960: Compare-and-branch-i960.

* conditional assembly: If.

* constant, single character: Chars.

* constants: Constants.

* constants, bignum: Bignums.

* constants, character: Characters.

* constants, converted by preprocessor: Preprocessing.

* constants, floating point: Flonums.

* constants, integer: Integers.

* constants, number: Numbers.

* constants, string: Strings.

* continuing statements: Statements.

* conversion instructions, i386: i386-Opcodes.

* coprocessor wait, i386: i386-prefixes.

* current address: Dot.

* current address, advancing: Org.

* data and text sections, joining: R.

* data section: Ld Sections.

* debuggers, and symbol order: Symbols.

* debugging COFF symbols: Def.

* decimal integers: Integers.

* deprecated directives: Deprecated.

* descriptor, of a.out symbol: Symbol Desc.

* difference tables altered: Word.

* difference tables, warning: K.

* directives and instructions: Statements.

* directives, M680x0: M68K-Directives.

* directives, machine independent: Pseudo Ops.

* directives, Z8000: Z8000 Directives.

* displacement sizing character, VAX: VAX-operands.

* dot (symbol): Dot.

* doublequote (\"): Strings.

* ECOFF sections: MIPS Object.

* eight-byte integer: Quad.

* empty expressions: Empty Exprs.

* endianness, MIPS: Overview.

* EOF, newline must precede: Statements.

* error messsages: Errors.

* errors, continuing after: Z.

* escape codes, character: Strings.

* even: Z8000 Directives.

* expr (internal section): As Sections.

* expression arguments: Arguments.

* expressions: Expressions.

* expressions, empty: Empty Exprs.

* expressions, integer: Integer Exprs.

* faster processing (-f): f.

* file name, logical: File.

* file name, logical: App-File.

* files, including: Include.

* files, input: Input Files.

* filling memory: Space.

* floating point numbers: Flonums.

* floating point numbers (double): Double.

* floating point numbers (single): Float.

* floating point numbers (single): Single.

* floating point, AMD 29K (IEEE): AMD29K Floating Point.

as 119 / 126

* floating point, H8/300 (IEEE): H8/300 Floating Point.

* floating point, H8/500 (IEEE): H8/500 Floating Point.

* floating point, HPPA (IEEE): HPPA Floating Point.

* floating point, i386: i386-Float.

* floating point, i960 (IEEE): Floating Point-i960.

* floating point, M680x0: M68K-Float.

* floating point, SH (IEEE): SH Floating Point.

* floating point, SPARC (IEEE): Sparc-Float.

* floating point, VAX: VAX-float.

* flonums: Flonums.

* format of error messages: Errors.

* format of warning messages: Errors.

* formfeed (\f): Strings.

* functions, in expressions: Operators.

* global: Z8000 Directives.

* grouping data: Sub-Sections.

* H8/300 addressing modes: H8/300-Addressing.

* H8/300 floating point (IEEE): H8/300 Floating Point.

* H8/300 line comment character: H8/300-Chars.

* H8/300 line separator: H8/300-Chars.

* H8/300 machine directives (none): H8/300 Directives.

* H8/300 opcode summary: H8/300 Opcodes.

* H8/300 options (none): H8/300 Options.

* H8/300 registers: H8/300-Regs.

* H8/300 size suffixes: H8/300 Opcodes.

* H8/300 support: H8/300-Dependent.

* H8/300H, assembling for: H8/300 Directives.

* H8/500 addressing modes: H8/500-Addressing.

* H8/500 floating point (IEEE): H8/500 Floating Point.

* H8/500 line comment character: H8/500-Chars.

* H8/500 line separator: H8/500-Chars.

* H8/500 machine directives (none): H8/500 Directives.

* H8/500 opcode summary: H8/500 Opcodes.

* H8/500 options (none): H8/500 Options.

* H8/500 registers: H8/500-Regs.

* H8/500 support: H8/500-Dependent.

* hex character code (\XDD): Strings.

* hexadecimal integers: Integers.

* HPPA directives not supported: HPPA Directives.

* HPPA floating point (IEEE): HPPA Floating Point.

* HPPA Syntax: HPPA Options.

* HPPA-only directives: HPPA Directives.

* i386 fwait instruction: i386-Float.

* i386 mul, imul instructions: i386-Notes.

* i386 conversion instructions: i386-Opcodes.

* i386 floating point: i386-Float.

* i386 immediate operands: i386-Syntax.

* i386 jump optimization: i386-jumps.

* i386 jump, call, return: i386-Syntax.

* i386 jump/call operands: i386-Syntax.

* i386 memory references: i386-Memory.

* i386 opcode naming: i386-Opcodes.

* i386 opcode prefixes: i386-prefixes.

* i386 options (none): i386-Options.

* i386 register operands: i386-Syntax.

* i386 registers: i386-Regs.

* i386 sections: i386-Syntax.

as 120 / 126

* i386 size suffixes: i386-Syntax.

* i386 source, destination operands: i386-Syntax.

* i386 support: i386-Dependent.

* i386 syntax compatibility: i386-Syntax.

* i80306 support: i386-Dependent.

* i960 callj pseudo-opcode: callj-i960.

* i960 architecture options: Options-i960.

* i960 branch recording: Options-i960.

* i960 compare and jump expansions: Compare-and-branch-i960.

* i960 compare/branch instructions: Compare-and-branch-i960.

* i960 floating point (IEEE): Floating Point-i960.

* i960 machine directives: Directives-i960.

* i960 opcodes: Opcodes for i960.

* i960 options: Options-i960.

* i960 support: i960-Dependent.

* identifiers, AMD 29K: AMD29K-Chars.

* immediate character, M680x0: M68K-Chars.

* immediate character, VAX: VAX-operands.

* immediate operands, i386: i386-Syntax.

* indirect character, VAX: VAX-operands.

* infix operators: Infix Ops.

* inhibiting interrupts, i386: i386-prefixes.

* input: Input Files.

* input file linenumbers: Input Files.

* instruction set, M680x0: M68K-opcodes.

* instruction summary, H8/300: H8/300 Opcodes.

* instruction summary, H8/500: H8/500 Opcodes.

* instruction summary, SH: SH Opcodes.

* instruction summary, Z8000: Z8000 Opcodes.

* instructions and directives: Statements.

* integer expressions: Integer Exprs.

* integer, 16-byte: Octa.

* integer, 8-byte: Quad.

* integers: Integers.

* integers, 16-bit: hword.

* integers, 32-bit: Int.

* integers, binary: Integers.

* integers, decimal: Integers.

* integers, hexadecimal: Integers.

* integers, octal: Integers.

* integers, one byte: Byte.

* internal as sections: As Sections.

* invocation summary: Overview.

* joining text and data sections: R.

* jump instructions, i386: i386-Opcodes.

* jump optimization, i386: i386-jumps.

* jump/call operands, i386: i386-Syntax.

* label (:): Statements.

* labels: Labels.

* ld: Object.

* length of symbols: Symbol Intro.

* line comment character: Comments.

* line comment character, AMD 29K: AMD29K-Chars.

* line comment character, H8/300: H8/300-Chars.

* line comment character, H8/500: H8/500-Chars.

* line comment character, M680x0: M68K-Chars.

* line comment character, SH: SH-Chars.

as 121 / 126

* line comment character, Z8000: Z8000-Chars.

* line numbers, in input files: Input Files.

* line numbers, in warnings/errors: Errors.

* line separator character: Statements.

* line separator, AMD 29K: AMD29K-Chars.

* line separator, H8/300: H8/300-Chars.

* line separator, H8/500: H8/500-Chars.

* line separator, SH: SH-Chars.

* line separator, Z8000: Z8000-Chars.

* lines starting with #: Comments.

* linker: Object.

* linker, and assembler: Secs Background.

* listing control, turning off: Nolist.

* listing control, turning on: List.

* listing control: new page: Eject.

* listing control: paper size: Psize.

* listing control: subtitle: Sbttl.

* listing control: title line: Title.

* listings, enabling: a.

* little endian output, MIPS: Overview.

* little-endian output, MIPS: MIPS Opts.

* local common symbols: Lcomm.

* local labels, retaining in output: L.

* local symbol names: Symbol Names.

* location counter: Dot.

* location counter, advancing: Org.

* logical file name: File.

* logical file name: App-File.

* logical line number: Line.

* logical line numbers: Comments.

* lval: Z8000 Directives.

* M680x0 addressing modes: M68K-Syntax.

* M680x0 addressing modes: M68K-Moto-Syntax.

* M680x0 architecture options: M68K-Opts.

* M680x0 branch improvement: M68K-Branch.

* M680x0 directives: M68K-Directives.

* M680x0 floating point: M68K-Float.

* M680x0 immediate character: M68K-Chars.

* M680x0 line comment character: M68K-Chars.

* M680x0 opcodes: M68K-opcodes.

* M680x0 options: M68K-Opts.

* M680x0 pseudo-opcodes: M68K-Branch.

* M680x0 size modifiers: M68K-Syntax.

* M680x0 support: M68K-Dependent.

* M680x0 syntax: M68K-Moto-Syntax.

* M680x0 syntax: M68K-Syntax.

* machine dependencies: Machine Dependencies.

* machine directives, AMD 29K: AMD29K Directives.

* machine directives, H8/300 (none): H8/300 Directives.

* machine directives, H8/500 (none): H8/500 Directives.

* machine directives, i960: Directives-i960.

* machine directives, SH (none): SH Directives.

* machine directives, SPARC: Sparc-Directives.

* machine directives, VAX: VAX-directives.

* machine independent directives: Pseudo Ops.

* machine instructions (not covered): Manual.

* machine-independent syntax: Syntax.

as 122 / 126

* manual, structure and purpose: Manual.

* memory references, i386: i386-Memory.

* merging text and data sections: R.

* messages from as: Errors.

* minus, permitted arguments: Infix Ops.

* MIPS architecture options: MIPS Opts.

* MIPS big-endian output: MIPS Opts.

* MIPS debugging directives: MIPS Stabs.

* MIPS ECOFF sections: MIPS Object.

* MIPS endianness: Overview.

* MIPS ISA: Overview.

* MIPS ISA override: MIPS ISA.

* MIPS little-endian output: MIPS Opts.

* MIPS R2000: MIPS-Dependent.

* MIPS R3000: MIPS-Dependent.

* MIPS R4000: MIPS-Dependent.

* MIPS R6000: MIPS-Dependent.

* mnemonics for opcodes, VAX: VAX-opcodes.

* mnemonics, H8/300: H8/300 Opcodes.

* mnemonics, H8/500: H8/500 Opcodes.

* mnemonics, SH: SH Opcodes.

* mnemonics, Z8000: Z8000 Opcodes.

* Motorola syntax for the 680x0: M68K-Moto-Syntax.

* multi-line statements: Statements.

* name: Z8000 Directives.

* named section (COFF): Section.

* named sections: Ld Sections.

* names, symbol: Symbol Names.

* naming object file: o.

* new page, in listings: Eject.

* newline (\n): Strings.

* newline, required at file end: Statements.

* null-terminated strings: Asciz.

* number constants: Numbers.

* numbered subsections: Sub-Sections.

* numbers, 16-bit: hword.

* numeric values: Expressions.

* object file: Object.

* object file format: Object Formats.

* object file name: o.

* object file, after errors: Z.

* obsolescent directives: Deprecated.

* octal character code (\DDD): Strings.

* octal integers: Integers.

* opcode mnemonics, VAX: VAX-opcodes.

* opcode naming, i386: i386-Opcodes.

* opcode prefixes, i386: i386-prefixes.

* opcode suffixes, i386: i386-Syntax.

* opcode summary, H8/300: H8/300 Opcodes.

* opcode summary, H8/500: H8/500 Opcodes.

* opcode summary, SH: SH Opcodes.

* opcode summary, Z8000: Z8000 Opcodes.

* opcodes for AMD 29K: AMD29K Opcodes.

* opcodes, i960: Opcodes for i960.

* opcodes, M680x0: M68K-opcodes.

* operand delimiters, i386: i386-Syntax.

* operand notation, VAX: VAX-operands.

as 123 / 126

* operands in expressions: Arguments.

* operator precedence: Infix Ops.

* operators, in expressions: Operators.

* operators, permitted arguments: Infix Ops.

* option summary: Overview.

* options for AMD29K (none): AMD29K Options.

* options for i386 (none): i386-Options.

* options for SPARC: Sparc-Opts.

* options for VAX/VMS: Vax-Opts.

* options, all versions of as: Invoking.

* options, command line: Command Line.

* options, H8/300 (none): H8/300 Options.

* options, H8/500 (none): H8/500 Options.

* options, i960: Options-i960.

* options, M680x0: M68K-Opts.

* options, SH (none): SH Options.

* options, Z8000: Z8000 Options.

* other attribute, of a.out symbol: Symbol Other.

* output file: Object.

* padding the location counter: Align.

* page, in listings: Eject.

* paper size, for listings: Psize.

* paths for .include: I.

* patterns, writing in memory: Fill.

* plus, permitted arguments: Infix Ops.

* precedence of operators: Infix Ops.

* precision, floating point: Flonums.

* prefix operators: Prefix Ops.

* prefixes, i386: i386-prefixes.

* preprocessing: Preprocessing.

* preprocessing, turning on and off: Preprocessing.

* primary attributes, COFF symbols: COFF Symbols.

* protected registers, AMD 29K: AMD29K-Regs.

* pseudo-opcodes, M680x0: M68K-Branch.

* pseudo-ops for branch, VAX: VAX-branch.

* pseudo-ops, machine independent: Pseudo Ops.

* purpose of GNU as: GNU Assembler.

* register names, AMD 29K: AMD29K-Regs.

* register names, H8/300: H8/300-Regs.

* register names, VAX: VAX-operands.

* register operands, i386: i386-Syntax.

* registers, H8/500: H8/500-Regs.

* registers, i386: i386-Regs.

* registers, SH: SH-Regs.

* registers, Z8000: Z8000-Regs.

* relocation: Sections.

* relocation example: Ld Sections.

* repeat prefixes, i386: i386-prefixes.

* return instructions, i386: i386-Syntax.

* rsect: Z8000 Directives.

* search path for .include: I.

* section override prefixes, i386: i386-prefixes.

* section-relative addressing: Secs Background.

* sections: Sections.

* sections in messages, internal: As Sections.

* sections, i386: i386-Syntax.

* sections, named: Ld Sections.

as 124 / 126

* segm: Z8000 Directives.

* SH addressing modes: SH-Addressing.

* SH floating point (IEEE): SH Floating Point.

* SH line comment character: SH-Chars.

* SH line separator: SH-Chars.

* SH machine directives (none): SH Directives.

* SH opcode summary: SH Opcodes.

* SH options (none): SH Options.

* SH registers: SH-Regs.

* SH support: SH-Dependent.

* single character constant: Chars.

* sixteen bit integers: hword.

* sixteen byte integer: Octa.

* size modifiers, M680x0: M68K-Syntax.

* size prefixes, i386: i386-prefixes.

* size suffixes, H8/300: H8/300 Opcodes.

* sizes operands, i386: i386-Syntax.

* small objects, MIPS ECOFF: MIPS Object.

* SOM symbol attributes: SOM Symbols.

* source program: Input Files.

* source, destination operands; i386: i386-Syntax.

* space used, maximum for assembly: statistics.

* SPARC architectures: Sparc-Opts.

* SPARC floating point (IEEE): Sparc-Float.

* SPARC machine directives: Sparc-Directives.

* SPARC options: Sparc-Opts.

* SPARC support: Sparc-Dependent.

* special characters, M680x0: M68K-Chars.

* special purpose registers, AMD 29K: AMD29K-Regs.

* standard as sections: Secs Background.

* standard input, as input file: Command Line.

* statement on multiple lines: Statements.

* statement separator character: Statements.

* statement separator, AMD 29K: AMD29K-Chars.

* statement separator, H8/300: H8/300-Chars.

* statement separator, H8/500: H8/500-Chars.

* statement separator, SH: SH-Chars.

* statement separator, Z8000: Z8000-Chars.

* statements, structure of: Statements.

* statistics, about assembly: statistics.

* stopping the assembly: Abort.

* string constants: Strings.

* string literals: Ascii.

* string, copying to object file: String.

* structure debugging, COFF: Tag.

* subexpressions: Arguments.

* subtitles for listings: Sbttl.

* subtraction, permitted arguments: Infix Ops.

* summary of options: Overview.

* support: HPPA-Dependent.

* supporting files, including: Include.

* suppressing warnings: W.

* sval: Z8000 Directives.

* symbol attributes: Symbol Attributes.

* symbol attributes, a.out: a.out Symbols.

* symbol attributes, COFF: COFF Symbols.

* symbol attributes, SOM: SOM Symbols.

as 125 / 126

* symbol descriptor, COFF: Desc.

* symbol names: Symbol Names.

* symbol names, $ in: SH-Chars.

* symbol names, $ in: H8/500-Chars.

* symbol names, local: Symbol Names.

* symbol names, temporary: Symbol Names.

* symbol storage class (COFF): Scl.

* symbol type: Symbol Type.

* symbol type, COFF: Type.

* symbol value: Symbol Value.

* symbol value, setting: Set.

* symbol values, assigning: Setting Symbols.

* symbol, common: Comm.

* symbol, making visible to linker: Global.

* symbolic debuggers, information for: Stab.

* symbols: Symbols.

* symbols with lowercase, VAX/VMS: Vax-Opts.

* symbols, assigning values to: Equ.

* symbols, local common: Lcomm.

* syntax compatibility, i386: i386-Syntax.

* syntax, M680x0: M68K-Moto-Syntax.

* syntax, M680x0: M68K-Syntax.

* syntax, machine-independent: Syntax.

* tab (\t): Strings.

* temporary symbol names: Symbol Names.

* text and data sections, joining: R.

* text section: Ld Sections.

* time, total for assembly: statistics.

* trusted compiler: f.

* turning preprocessing on and off: Preprocessing.

* type of a symbol: Symbol Type.

* undefined section: Ld Sections.

* unsegm: Z8000 Directives.

* value attribute, COFF: Val.

* value of a symbol: Symbol Value.

* VAX bitfields not supported: VAX-no.

* VAX branch improvement: VAX-branch.

* VAX command-line options ignored: Vax-Opts.

* VAX displacement sizing character: VAX-operands.

* VAX floating point: VAX-float.

* VAX immediate character: VAX-operands.

* VAX indirect character: VAX-operands.

* VAX machine directives: VAX-directives.

* VAX opcode mnemonics: VAX-opcodes.

* VAX operand notation: VAX-operands.

* VAX register names: VAX-operands.

* VAX support: Vax-Dependent.

* Vax-11 C compatibility: Vax-Opts.

* VAX/VMS options: Vax-Opts.

* version of as: v.

* VMS (VAX) options: Vax-Opts.

* warning for altered difference tables: K.

* warning messages: Errors.

* warnings, suppressing: W.

* whitespace: Whitespace.

* whitespace, removed by preprocessor: Preprocessing.

* wide floating point directives, VAX: VAX-directives.

as 126 / 126

* writing patterns in memory: Fill.

* wval: Z8000 Directives.

* Z800 addressing modes: Z8000-Addressing.

* Z8000 directives: Z8000 Directives.

* Z8000 line comment character: Z8000-Chars.

* Z8000 line separator: Z8000-Chars.

* Z8000 opcode summary: Z8000 Opcodes.

* Z8000 options: Z8000 Options.

* Z8000 registers: Z8000-Regs.

* Z8000 support: Z8000-Dependent.

* zero-terminated strings: Asciz.

	as
	as
	Overview
	Manual
	GNU Assembler
	Object Formats
	Command Line
	Input Files
	Object
	Errors
	Invoking
	a
	D
	f
	I
	K
	L
	o
	R
	statistics
	v
	W
	Z
	Syntax
	Preprocessing
	Whitespace
	Comments
	Symbol Intro
	Statements
	Constants
	Characters
	Strings
	Chars
	Numbers
	Integers
	Bignums
	Flonums
	Sections
	Secs Background
	Ld Sections
	As Sections
	Sub-Sections
	bss
	Symbols
	Labels
	Setting Symbols
	Symbol Names
	Dot
	Symbol Attributes
	Symbol Value
	Symbol Type
	a.out Symbols
	Symbol Desc
	Symbol Other
	COFF Symbols
	SOM Symbols
	Expressions
	Empty Exprs
	Integer Exprs
	Arguments
	Operators
	Prefix Ops
	Infix Ops
	Pseudo Ops
	Abort
	ABORT
	Align
	App-File
	Ascii
	Asciz
	Byte
	Comm
	Data
	Def
	Desc
	Dim
	Double
	Eject
	Else
	Endef
	Endif
	Equ
	Extern
	File
	Fill
	Float
	Global
	hword
	Ident
	If
	Include
	Int
	Lcomm
	Lflags
	Line
	Ln
	List
	Long
	Nolist
	Octa
	Org
	Psize
	Quad
	Sbttl
	Scl
	Section
	Set
	Short
	Single
	Size
	Space
	Stab
	String
	Tag
	Text
	Title
	Type
	Val
	Word
	Deprecated
	Machine Dependencies
	Vax-Dependent
	Vax-Opts
	VAX-float
	VAX-directives
	VAX-opcodes
	VAX-branch
	VAX-operands
	VAX-no
	AMD29K-Dependent
	AMD29K Options
	AMD29K Syntax
	AMD29K-Chars
	AMD29K-Regs
	AMD29K Floating Point
	AMD29K Directives
	AMD29K Opcodes
	H8/300-Dependent
	H8/300 Options
	H8/300 Syntax
	H8/300-Chars
	H8/300-Regs
	H8/300-Addressing
	H8/300 Floating Point
	H8/300 Directives
	H8/300 Opcodes
	H8/500-Dependent
	H8/500 Options
	H8/500 Syntax
	H8/500-Chars
	H8/500-Regs
	H8/500-Addressing
	H8/500 Floating Point
	H8/500 Directives
	H8/500 Opcodes
	HPPA-Dependent
	HPPA Notes
	HPPA Options
	HPPA Syntax
	HPPA Floating Point
	HPPA Directives
	HPPA Opcodes
	SH-Dependent
	SH Options
	SH Syntax
	SH-Chars
	SH-Regs
	SH-Addressing
	SH Floating Point
	SH Directives
	SH Opcodes
	i960-Dependent
	Options-i960
	Floating Point-i960
	Directives-i960
	Opcodes for i960
	callj-i960
	Compare-and-branch-i960
	M68K-Dependent
	M68K-Opts
	M68K-Syntax
	M68K-Moto-Syntax
	M68K-Float
	M68K-Directives
	M68K-opcodes
	M68K-Branch
	M68K-Chars
	Sparc-Dependent
	Sparc-Opts
	Sparc-Float
	Sparc-Directives
	i386-Dependent
	i386-Options
	i386-Syntax
	i386-Opcodes
	i386-Regs
	i386-prefixes
	i386-Memory
	i386-jumps
	i386-Float
	i386-Notes
	Z8000-Dependent
	Z8000 Options
	Z8000 Syntax
	Z8000-Chars
	Z8000-Regs
	Z8000-Addressing
	Z8000 Directives
	Z8000 Opcodes
	MIPS-Dependent
	MIPS Opts
	MIPS Object
	MIPS Stabs
	MIPS ISA
	Acknowledgements
	Index

